
PBP as Efficient Bit-Serial SIMD
Parallel bit pattern (PBP) computing is a quantum-in-
spired computation model, but it was not created to re-
place quantum computing: the goal is to reduce power
per computation by orders of magnitude.

LCPC17: How Low Can You Go?

Our 2017 paper at Languages and Compilers for Parallel
Computing, DOI 10.1007/978-3-030-35225-7_8, observed
that the best way to reduce power/computation is to elimi-
nate unnecessary gate-level operations:

• Work only on active bits (bit-serial), not words

• Aggressively optimize computations at the gate-level

• Leverage entangled superposition

As our LCPC22 paper, Wordless Integer and Floating-
Point Computing, describes we now have a C++ library
that accomplishes all three of those goals. It not only im-
plements quantum-like pbit (pattern bit), but also pint
(pattern integer) and pfloat (pattern float) with run-
time variable precision and compiler-like symbolic opti-
mization at the pbit and lower levels. The interesting thing
is that pbit entangled superpositions are not used to im-
plement quantum-like computation, but to dramatically im-
prove the efficiency of bit-serial SIMD execution.

Bit-Serial SIMD Execution

Bit-serial processing basically means that multi-bit values
are evaluated one bit position at a time. Consider:

int a, b, c; c = a + b;

Using 32-bit words, a carry lookahead addition would re-
quire ~645 gate actions to produce one 32-bit result every
clock cycle. Using ripple carry would only take ~153 gate
actions, and could be done bit serially in 32 faster clock
cycles. The throughput can then be multiplied by having
many bit-serial SIMD processing elements; this was done
in early supercomputers including MPP and CM1/CM2.

We can do much better with a little runtime symbolic opti-
mization. If the current values of a and b each fit in just 4
bits, we only need 17 gate actions or four clock cycles. If
b happens to be 1, instead of a 32-bit adder, a 4-bit incre-
menter with just 7 gate actions suffices! Our PBP C++ li-
brary tracks precision of both pint and pfloat data,
also applying symbolic optimization at the pbit level to
avoid unnecessary gate-level operations.

Leveraging PBP Entangled Superposition

An E-way entangled pbit is logically equivalent to an ar-
ray of 2E bit values, one bit in each of 2E fully addressable
entanglement channels – each of which can be treated
as a virtual SIMD processing element. For example, con-
sider a pint that holds the PE number, from 0 to 31, in
each of 32 PEs (E=5). With PE0 in the rightmost entan-
glement channel, this would look like:

10101010 10101010 10101010 10101010
11001100 11001100 11001100 11001100
11110000 11110000 11110000 11110000
11111111 00000000 11111111 00000000
11111111 11111111 00000000 00000000

The grouping into chunks of 8 channels each isn’t just to
increase readability here; PBP fragments pbit values
into chunks of 2K bits. Only a single copy of each unique
chunk pattern is stored and a pbit’s value is actually
stored as a regular expression treating each chunk as a
symbol. Thus, the example would really be:

chunk(2) chunk(2) chunk(2) chunk(2)
chunk(3) chunk(3) chunk(3) chunk(3)
chunk(4) chunk(4) chunk(4) chunk(4)
chunk(1) chunk(0) chunk(1) chunk(0)
chunk(1) chunk(1) chunk(0) chunk(0)

and would use only 5*8=40 bits of storage, not 160. Sym-
bolic analysis eliminates many chunk operations: for ex-
ample, chunk(1) & chunk(42) is chunk(42) without
examining any bits, and any chunk operation that has
been done before on any PEs is available to all, hence is-
never repeated. This is a huge reduction in gate opera-
tions needed. A PBP chunk behaves like a generalization
of a GPU warp, allowing computation to be skipped under
far more circumstances than just when all component
PEs are disabled. Of course, chunks are typically K≥8,
not K=3, and up to 4G PEs are supported.

In Our SC25 Exhibit (booth #5400)

The big new piece of hardware in our research exhibit is
KES, which uses LEDs under each of six “Q-bits” to show
the PBP chunked bit vectors. Each row of LEDs in KES
corresponds to one of 64 bit-serial PEs within a SIMD en-
gine, which comprises eight K=3 SIMD chunk engines.
Only chunk computations producing LEDs lit red require
bit-level work, so the dramatic reduction in total gate-level
actions needed is obvious. These chunk computations
could be scheduled using a pool of compute resources
containing any number of K=3 SIMD chunk engines.

The little new piece of hardware is PBPx4, which uses an
aggregate function network to coordinate four K=10
SIMD chunk processors implemented using FPGAs.
When fully operational, we expect PBPx4 to prove our
claims of orders of magnitude power reduction using PBP.

@techreport{sc25pint,
author={Dietz, Henry},
title={{PBP as Efficient Bit-Serial SIMD}},
institution={{University of Kentucky}},
url={{http://aggregate.org/WHITE/sc25pint.pdf}},
month={Nov}, year=2025}

http://aggregate.org/WHITE/sc22pint.pdf

