PBP as Efficient Bit-Serial SIMD

Parallel bit pattern (PBP) computing is a quantume-in-
spired computation model, but it was not created to re-
place quantum computing: the goal is to reduce power
per computation by orders of magnitude.

LCPC17: How Low Can You Go?

Our 2017 paper at Languages and Compilers for Parallel
Computing, DOI 10.1007/978-3-030-35225-7_8, observed
that the best way to reduce power/computation is to elimi-
nate unnecessary gate-level operations:

» Work only on active bits (bit-serial), not words
» Aggressively optimize computations at the gate-level
» Leverage entangled superposition

As our LCPC22 paper, Wordless Integer and Floating-
Point Computing, describes we now have a C++ library
that accomplishes all three of those goals. It not only im-
plements quantum-like pbit (pattern bit), but also pint
(pattern integer) and pfloat (pattern float) with run-
time variable precision and compiler-like symbolic opti-
mization at the pbit and lower levels. The interesting thing
is that pbit entangled superpositions are not used to im-
plement quantum-like computation, but to dramatically im-
prove the efficiency of bit-serial SIMD execution.

Bit-Serial SIMD Execution

Bit-serial processing basically means that multi-bit values
are evaluated one bit position at a time. Consider:

Using 32-bit words, a carry lookahead addition would re-
quire ~645 gate actions to produce one 32-bit result every
clock cycle. Using ripple carry would only take ~153 gate
actions, and could be done bit serially in 32 faster clock
cycles. The throughput can then be multiplied by having
many bit-serial SIMD processing elements; this was done
in early supercomputers including MPP and CM1/CM2.

We can do much better with a little runtime symbolic opti-
mization. If the current values of a and b each fit in just 4
bits, we only need 17 gate actions or four clock cycles. If

happens to be 1, instead of a 32-bit adder, a 4-bit incre-
menter with just 7 gate actions suffices! Our PBP C++ li-
brary tracks precision of both pint and pfloat data,
also applying symbolic optimization at the pbit level to
avoid unnecessary gate-level operations.

Leveraging PBP Entangled Superposition

An E-way entangled pbit is logically equivalent to an ar-
ray of 2F bit values, one bit in each of 2€ fully addressable
entanglement channels — each of which can be treated
as a virtual SIMD processing element. For example, con-
sider a pint that holds the PE number, from 0 to 31, in
each of 32 PEs (E=5). With PEO in the rightmost entan-
glement channel, this would look like:

10101010 10101010 10101010
11001100 11001100 11001100
11110000 11110000 11110000
11111111 00000000 11111111
11111111 11111111 00000000

10101010
11001100
11110000
00000000
00000000

P sc25

St. L.ouls

The grouping into chunks of 8 channels each isn't just to
increase readability here; PBP fragments pbit values
into chunks of 2% bits. Only a single copy of each unique
chunk pattern is stored and a pbit's value is actually
stored as a regular expression treating each chunk as a
symbol. Thus, the example would really be:

chunk (2) chunk (2) chunk (2) chunk(2)
chunk (3) chunk (3) chunk (3) chunk(3)
chunk (4) chunk (4) chunk (4) chunk(4)
chunk (1) chunk (0) chunk (1) chunk(0)
chunk (1) chunk (1) chunk (0) chunk(0)

and would use only 5*8=40 bits of storage, not 160. Sym-
bolic analysis eliminates many chunk operations: for ex-
ample, chunk (1) & chunk (42) is chunk (42) without
examining any bits, and any chunk operation that has
been done before on any PEs is available to all, hence is-
never repeated. This is a huge reduction in gate opera-
tions needed. A PBP chunk behaves like a generalization
of a GPU warp, allowing computation to be skipped under
far more circumstances than just when all component
PEs are disabled. Of course, chunks are typically K=8,
not K=3, and up to 4G PEs are supported.

In Our SC25 Exhibit (booth #5400)

The big new piece of hardware in our research exhibit is
KES, which uses LEDs under each of six “Q-bits” to show
the PBP chunked bit vectors. Each row of LEDs in KES
corresponds to one of 64 bit-serial PEs within a SIMD en-
gine, which comprises eight K=3 SIMD chunk engines.
Only chunk computations producing LEDs lit red require
bit-level work, so the dramatic reduction in total gate-level
actions needed is obvious. These chunk computations
could be scheduled using a pool of compute resources
containing any number of K=3 SIMD chunk engines.

The little new piece of hardware is PBPx4, which uses an
aggregate function network to coordinate four K=10
SIMD chunk processors implemented using FPGAs.
When fully operational, we expect PBPx4 to prove our
claims of orders of magnitude power reduction using PBP.

@techreport{sc25pint,

author={Dietz, Henry},

title={{PBP as Efficient Bit-Serial SIMD}},
institution={{University of Kentucky}},
url={{http://aggregate.org/WHITE/sc25pint .pdf}},

month={Nov}, year=2025}
Aggre gate.0rg-

% UNBRIDLED COMPUTING

University of

Kentucky


http://aggregate.org/WHITE/sc22pint.pdf

