EGR101 Lecture

Hank Dietz

Electrical & Computer Engineering Dept. University of Kentucky Lexington, KY 40506-0046

• Electrical Engineers make hardware?

- Electrical Engineers make hardware?
- Computer Scientists make software?

- Electrical Engineers make hardware?
- Computer Scientists make software?
- Computer Engineers make it all work:
 - System software; compilers & OS
 - Hardware architecture, logic, & VLSI
 - Understand, design, and implement computing systems to meet goals (performance and/or new abilities)

Computer Engineering Core Topics Include...

- Programming & software engineering
- Basic circuits & digital logic
- Computer architecture
- Embedded systems
- Compilers
- Operating Systems (OS)

U.S. Bureau of Labor Statistics (www.bls.gov)

- Various types of computer engineers
- 2008 stats
 - 32% growth for 2008-2018
 - median salary \$87,790 \$94,180
- 2009 stats
 - Systems software, median \$93,470
 - Hardware, median \$98,610

What Is A Computer?

- Originally: a person employed to do arithmetic
- 50 years ago: a machine that does arithmetic
- Now:

a machine that uses arithmetic and logic to accomplish some task

Early Computers

Personal Computers

Supercomputers

- One of the most expensive computers?
- A very fast computer?
- Two key characteristics:
 - Computer that solves big problems... stuff that wouldn't fit on a PC stuff that would take too long to run
 - Performance can scale... more money buys a faster machine

The Key Is Parallel Processing

- Process N "pieces" simultaneously, get up to factor of N speedup
- Modular hardware designs:
 - Relatively easy to scale just add modules
 - Higher availability (if not reliability)

1992, MasPar MP1

1994, Linux PC Cluster

1996, 30MP Video Wall

Fat Tree

Flat Neighborhood Network

2000, KLAT2

2003, KASY0

2006, ATI GPU

2012, GPU Clusters

A GFLOPS is 1 Billion {+,*} per second 1992 MasPar MP1 \$1,000,000 / GFLOPS

A GFLOPS is 1 Billion {+,*} per second

 1992
 MasPar MP1
 \$1,000,000 / GFLOPS

 2000
 KLAT2
 \$650 / GFLOPS

A GFLOPS is 1 Billion {+,*} per second

 1992
 MasPar MP1
 \$1,000,000 / GFLOPS

 2000
 KLAT2
 \$650 / GFLOPS

 2003
 KASY0
 \$84 / GFLOPS

A GFLOPS is 1 Billion {+,*} per second

 1992
 MasPar MP1
 \$1,000,000 / GFLOPS

 2000
 KLAT2
 \$650 / GFLOPS

 2003
 KASY0
 \$84 / GFLOPS

 2010
 NAK
 \$0.65 / GFLOPS

Our latest is about \$0.25 / GFLOPS

So it's all about making better supercomputers?

So it's all about making better supercomputers?

Chips Too!

- Billions of transistors on a single chip
- Lots of parallelism on a chip
- Systems on chips, not just processors

2001, AMD Athlon XP

2010, 6-core Intel i7

Intel® Core™ i7-980X Processor Die Map 32nm Westmere High-k + Metal Gate Transistors

VLSI & Nanotechnology

So it's all about making better processor chips?

So it's all about making better processor chips?

Embedded Computers

- Each serves a single purpose
- Controls or monitors real-world things
- Doesn't do Windows (well, some do, but more run Linux)
- Doesn't look like a "computer"
- These are an integral part of modern society – 1 ARM / person by 2014!

Embedded Computers

B

 \bigcirc

Smart Devices

Active Research At UK

So, it's about making everything "smarter"?

So, it's about making everything "smarter"?

Smart Stuff

- Embedding computers in things makes them able to act intelligently
- Building and using powerful computers as tools amplifies human intelligence
- Typical benefits:
 - Improve performance
 - Reduce cost
 - Give new capabilities

Two Very Quick Examples...

• Embedded:

A blender uses a microcontroller to save the cost of latching buttons and control motor current consumption.

 Cheap supercomputing: An inkjet printer's head is redesigned so that the motion of the printhead dries the current page before the next one can fall on it.

Be Smart.

- Take Computer Engineering courses; We're not a department, so you'll see a mix of ECE and CS faculty/courses
- Join student organizations, especially IEEE and ACM
- Take advantage of UK's environment:
 - Interact with other students & faculty
 - Get a taste of research