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Abstract. It could be said that much of the evolution of computers
has been the quest to make use of the exponentially-growing amount of
on-chip circuitry that Moore predicted in 1965 – a trend that many now
claim is coming to an end[1]. Whether that rate slows or not, it is no
longer the driver; there is already more circuitry than can be continu-
ously powered. The immediate future of parallel language and compiler
technology should be less about finding and using parallelism and more
about maximizing the return on investment of power.

Programming language constructs generally operate on data words, and
so does most compiler analysis and transformation. However, individual
word-level operations often harbor pointless, yet power hungry, lower-
level operations. This paper suggests that parallel compilers should not
only be identifying and manipulating massive parallelism, but that the
analysis and transformations should go all the way down to the bit or
gate level with the goal of maximizing parallel throughput per unit of
power consumed. Several different ways in which compiler analysis can
go lower than word-level are discussed.
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1 A Word About Words

Throughout the history of computers, programming systems have taken a mul-
titude of different approaches: procedural, declarative, functional, .... However,
in nearly all cases, typed data objects are treated as indivisible entities. A REAL

in Fortran is a thing; it may be operated upon, but whatever happens to it hap-
pens to it as a whole unit. In lower-level languages like C, machine words can
be dressed as abstract data types, but they retain all the properties of machine
words. This paper suggests it is time for compiler technology to start looking
inside basic word-level data and operations.

There are two different ways that sub-word analysis can be approached.
The following section discusses methods by which words may be segmented into
smaller words or fields to avoid processing meaningless bits. The section follow-
ing that describes full bit-level analysis and optimization to remove unnecessary
power use at the gate level.
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2 Not All The Bits, Not All The Time

In languages and compilers for parallel computing, the focus has largely been on
utilizing as much parallelism as the hardware provides, with the expectation that
the maximum speedup will be obtained. At Thinking Machines in the 1980s,
the mantra was “all the wires all the time” – and this notion of keeping all
the hardware busy all the time certainly predates the 1980s and has persisted.
However, it is now practical to have far more circuitry on a chip than can be
continuously powered. The implication is that languages and compilers must
become more careful about not wasting power on unnecessary computation.

Whenever a programmer writes code manipulating numeric data, they will
likely consider if the values are known to always be integers, and most often will
declare the variable as int if so, and double otherwise. Even the unsigned int

type is rarely used, which is strange given that array index values are normally
non-negative. Accepting these sloppy type declarations implies extra work – and
extra power consumption – for processing what are essentially useless bits.

2.1 Integer Range Analysis

In most modern programming languages, an integer is implemented by hardware
operating on a word with at least 32 bits. In code you have written, does each
integer really have values spanning the complete range of 32-bit integer values,
from -2,147,483,648 to 2,147,483,647? Of course not.

For example, if an integer int i; is used to index an array declared as double
a[1000];, it is fairly clear that i should be in the range 0..999. That range spans
fewer than 1024 values, which means it fits within 10 bits. So, what happens to
the other 22 bits of the 32-bit integer? The answer is everything – even though
the result is to store the same 22-bit zero value that was already there into i’s
top bits. If the 10-bit value was treated as a 16-bit value, instead of 32-bit, less
than half as much ALU and datapath circuitry would need to be active.

Originally, the C programming language did not specify how many bits were
used to represent an int – it merely stated that an int was “an integer, typically
reflecting the natural size of integers on the host machine” and listed as exam-
ples 16 bits for a DEC PDP-11, 36 bits for Honeywell 6000, and 32 bits for IBM
370 and Interdata 8/32[2]. However, this made many programs non-portable
between machines. To improve portability, programmers used macros to define
portable names for declaring types of various common sizes, which eventually
led to standards like int32 t meaning a 32-bit integer in C++. Ironically, the
original C language includes a fully general syntax for specifying the exact num-
ber of bits in an integer, but the syntax was only allowed for fields of a struct.
For example, struct { int:5 a; unsigned:1 b; } ab; specifies that ab.a is
a 5-bit signed integer and ab.b is 1-bit unsigned integer.

Certainly, it makes sense for programming languages to allow specification
of the number of bits in each value. However, there is even ambiguity in such
a specification: does int:5 mean “5-bit integer” or “integer of at least 5 bits”?
As bitfield specifications, C treated the specification as the exact number of
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bits rather than a minimum, but arguably it would often be useful, for exam-
ple, to store a 5-bit integer in an 8-bit byte to meet memory access alignment
constraints.

From a compilation point of view, the key is not just tracking the size
of data objects, but using analysis to determine the set of active bits. Thus,
the loop index variable declared as int i; could be automatically transformed
by compiler analysis into something like unsigned i:10;. The necessary com-
piler value range analysis has long been known and used to perform loop un-
rolling/unraveling, improve efficiency of array bounds checking, and support
dependence analysis... and it was used to infer types of variables as early as
the mid-1960s[3]! The suggestion of the current work is simply that this type
of analysis of value range be used both to adjust the declared size and type
(e.g., signed vs. unsigned), and also to restrict operations to cover the active
bits within that value’s storage representation. Reusing the loop index example,
even if i is stored as int i:32;, it is perfectly valid to operate only on the
bottom 16 (or 10) bits in code where the top bits are known to be unaffected.

2.2 Floating-Point Accuracy, Not Precision

While tracking the size of integers is straightforward, the logically equivalent
analysis for floating-point values is significantly more complex.

Operations on floating-point representations are inherently imprecise. The
whole concept of floating-point is based on using an approximate representation
of values to allow greater dynamic range with fewer bits. New hardware supports
several floating-point precisions with huge performance benefits in use of lower
precisions while remaining in the same power budget. Peak performance of the
AMD RADEON INSTINCT MI25 GPU[4] is 768 GFLOPS 64-bit, 12.3 TFLOPS
32-bit, and 24.6 TFLOPS 16-bit – a factor of 32X faster using the lowest precision
instead of 64-bit double.

According to IEEE 754[5], the larger exponent field of 64-bit double gives it
greater dynamic range than a 32-bit float, but lack of dynamic range is rarely
why double is specified. The 24-bit mantissa of a float is accurate enough to
express nearly any physical measurement for input or output. However, it is diffi-
cult to analyze the accuracy resulting from errors compounded while performing
an arbitrary computation; the 53-bit mantissa of a double is treated as having
so many guard bits that the programmer is comfortable accepting the results
as accurate. This is a false security; not only is efficiency sacrificed, but when
float is insufficient, double often also fails to deliver accurate results[6].

Rather than requiring the programmer to specify the precision, perhaps
needed accuracy should be specified, and the compiler tasked with picking the
appropriate precision. Unfortunately, compile-time analysis of accuracy bounds
is inherently conservative, disturbingly often revealing that even double arith-
metic is insufficient to guarantee an acceptably accurate result for worst-case
input data, although lower precisions might suffice for every dataset actually
used. Most programming languages also lack syntax for specifying accuracy.
Both these problems can be resolved by adding a language construct (or pragma)
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that allows a user-specified accuracy acceptance test[6], which can be used to
speculatively perform each computation at the minimum feasible precision, au-
tomatically repeating the computation at higher precision if necessary.

There is yet another advantage to specifying accuracy rather than precision
for floating-point values: the values do not need to be represented using floating-
point at all! For example, it may be advantageous to use LNS (logarithmic num-
ber system)[7] or to map the computation into scaled integer arithmetic. IEEE
floating-point formats are primarily portable data exchange representations.

2.3 Smaller Data Fits

A consequence of the transformations discussed above for both integer and
floating-point data is that lower precision values can fit in a smaller memory
footprint. That principle holds true whether the memory is DRAM used for
main memory or SRAM registers in a processing element. Reducing memory
footprint reduces power by implying transmission of fewer bits, and can result
in far greater power savings if the smaller data can more often reside in a higher
level of the memory hierarchy.

Originally, the concept of SWAR (SIMD within a register)[8] was primarily
to obtain modest speedups by packing a vector of smaller data objects into each
register and performing SIMD-parallel operations on the packed data. Nearly
all processors provide support for such packing, most in the form of SWAR
instructions as seen in Intel AVX[9] or ARM NEON[10], but also in the form
of “Advanced Vector Extensions” in RISC-V[11]. Operations on packed data
significantly reduce power consumption while facilitating parallel execution.

For non-SIMD non-vector code, this packing requires compiler tracking of
the occupancy of portions of registers, not just complete registers. A 64-bit
register might hold four 16-bit values, and the lifetimes of those values may be
different; thus, it is possible that a fraction of the register might be free for reuse
while other parts are occupied by live values. Early work attempting to create
SWAR register packings was called common subexpression induction[12], and
the tracking of partial liveness was mentioned, but the analysis was never fully
developed. Perhaps it is now time? There is no need to restrict layout analysis
to registers; similar benefits can be obtained packing cache lines.

3 From Bits To Words, And Back Again

In 1958, the vacuum-tube-based EDSAC 2 computer[13] used the innovative trick
of bit-slicing: implementing word-level instructions by executing microcoded se-
quences of operations on a smaller number of bits at a time. This approach
was very widely adopted throughout the 1970s; for example, the AMD Am2900-
series bipolar logic chips[14] provided 4-bit slice components that were used in a
wide variety of computers including various DEC PDP-11 models and the UCSD
Pascal P-machine processor. Use of bit-slicing greatly simplified the hardware,
lowering cost at the expense of serial execution speed. By the 1980s, circuitry
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was cheap enough for most computers to operate on full words at a time, with
word size slowly increasing from 8, to 16, to 32, and finally to 64 bits.

Massively-parallel computers have largely followed the same pattern. Fewer
gates per processing element meant more parallelism, hence greater speedup, so
many parallel supercomputers reduced circuitry per processing element by slic-
ing. The ICL Distributed Array Processor (DAP)[15], STARAN[16], Goodyear
Massively Parallel Processor (MPP)[17], Thinking Machines CM and CM2[18],
and NCR GAPP[19] sliced at the single-bit level; the somewhat-later MasPar
MP-1[20] was built using 4-bit slices. As 32-bit microprocessors became cost
effective, and especially with the birth of Linux PC cluster supercomputing in
1994, massively-parallel computers began to migrate to processing elements that
operate on a word at a time. Now, even GPUs with thousands of processing el-
ements on a single chip operate on at least 32-bit words.

The point is that word-parallel hardware was about speeding up serial op-
erations on word data at the cost of higher circuit complexity per unit perfor-
mance. For example, a 32-bit adder needs additional logic (e.g., implementing
carry lookahead) to perform one 32-bit add as fast as 32 one-bit adders can each
perform 1/32 of a 32-bit add. This difference has become critical in the power-
limited world. As a result, I believe we are now in the early days of a rebirth in
bit-level massively-parallel processing. This brings at least two new challenges
for optimizing, parallelizing, compiler technology.

3.1 True Bit-Level Optimization

Mapping of word-level algorithms into optimized bit-level implementations must
be addressed. Earlier bit-sliced systems generally did not do this; they would use
a generic microcode subroutine to handle each word-level operator rather than
optimizing at the bit level. An early example of true bit-level optimization is
the BitC language and compiler[21]. For example, BitC generates 3,040 gate
operations for an 8-bit multiply, but just 64 for 8-bit squaring.

The new bit-level targets are not just conventional gates, but include FP-
GAs and reconfigurable logic, adiabatic circuits, quantum logic, etc. For exam-
ple, TrueNorth[22] is fundamentally a massively parallel bit-serial machine with
a somewhat unusual gate structure; although there is some compiler infrastruc-
ture for mapping neural networks to it, there is no fundamental reason why
parallel algorithms in general could not be transformed to target it (in fact,
watching the TrueNorth videos, I have flashbacks of Danny Hillis talking about
the interconnections between processors in the connection machine[18]).

3.2 Whole Program Scale Gate Optimization

Thus far, very little optimizing compiler work has attacked the problem of opti-
mizing programs at what might be called the circuit model level. There are lots of
gate-level circuit optimization tools, especially for SOP (sum of products) form
using AND, OR, and NOT gates with arbitrary many inputs (e.g., Espresso[23]),
but these tools are ill-suited to processing logic representing complete programs.
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Fig. 1. MUX and CSWAP (Fredkin) Gates And Logic Functions

Optimizing more realistic hardware designs also using XOR gates, or using only
a single, fixed number of inputs, universal gate such as NAND, NOR, or MUX
(1-of-2 multiplexor), is also an unsolved problem. Genetic algorithms and other
machine learning techniques can help.

In addition, a variety of new types of gates have been created for adiabatic
and quantum computation. One of the more promising is the Fredkin, or CSWAP
(conditional swap), gate. As Figure 1 shows, CSWAP is essentially a MUX with
an extra output, so it is obviously universal, but has the interesting property
that the number of 1 bits entering and leaving is preserved, making it par-
ticularly suitable for adiabatic (thermodynamically reversible, very low power)
implementation. A quantum CSWAP implementation was reported last year[24].
Thus, converting programs into CSWAP logic could be a path to very low power
consumption and high performance. A key complication is that CSWAP gates
do not allow fanout; minimizing the number of ancilla “garbage” wires added to
copy signals while conserving the number of 1s is a non-trivial design problem.

4 Conclusion

Parallel languages and compilers had mostly been about the large. This paper
suggests it is time to be looking at very large numbers of very small, low-level,
details – many intricately intertwining compiler technology and architecture.

We have been slowly moving in the directions discussed in this paper for over
two decades[6][12][21]. Earlier this year, we made a significant advance toward
targeting various bit-level architectures, especially those involving adiabatic or
quantum logic: a compiler that converts a program written in a subset of C
directly into a full custom gate-level hardware design[25]. This compiler first
performs conventional analysis and various optimizations, then inserts explicit
manipulation of a state variable to implement control flow. Each word-level
value is then decomposed into a vector of bit-level operation DAGs computing
the individual bits, and the bit-level code for all basic blocks in the program
is optimized as a single combinatorial logic circuit. The resulting circuit can be
output in any of a variety of forms, including as a combinatorial Verilog module
that implements the C code when fed a series of clock pulses. Of course, this
compiler is just a crude proof of concept; there is still a long way to go.
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