Assembly/Machine Language

CPE380, Spring 2025

Hank Dietz

http://aggregate.org/hankd/

@z University of
Kentucky

http://aggregate.org/hankd

Compiling a C Program

. Compiler generates assembly code

. Assembler creates binary modules

— Machine code, data, & symbolic info

— Libraries are modules too

. Linker combines needed modules into one
. Loader is the part of the OS that loads a
module into memory for execution

Usually, HLL programmers don't see this;
1-3 invoked by cc, 4 when you run the program

Assembly Language(s)?

* Not one language, but one per ISA

* "Human readable” textual representation
— Typically, one line becomes one instruction
- May also have macros
— Directives control assembly, specify data

* Used to be used for programming... now:
- Used mostly as compiler target
— People use it for debugging, performance
tweaking, or when no other option exists

Which Assembly Language?

* Which assembly language will we use?
- MIPS?
— |A32 or AMD64/Intel64/X86-647
- ARM?

* We'll start with a simple stack instruction set:
— Close to what most compilers do internally
— Can transform to whichever

* No, the

Worlds Inside Programs

Most programming languages are very similar,
procedural (as opposed to descriptive, etc.)

Code:

— Assignments & expressions
— Control flow

— Functions & subroutines

Data

Comments — which we'll ignore :-(

Worlds Inside Programs

Most programming languages are very similar,
procedural (as opposed to descriptive, etc.)

Code:

— Assignments & expressions -

— Control flow - easy, similar in most ISAs
— Functions & subroutines -

Data - easy, similar in most ISAs

Comments — which we'll ignore :-(

Control Flow

* Determines sequence/order of operations
(orders can be parallel)

 HLLs have many constructs:
* if-then—-else, switch—-case, etC.
* while-do, repeat—until, for, elC.
* goto, break, continue

* Most assembly languages just have goto
and conditional goto... so that's what we
must use to implement everything

Compilation / Translation

Compilation is really based on “compiling” a
bunch of code chunks that represent each part
of your program into the translated constructs

Compiler optimization isn't really “optimal” -
apply correctness-preserving transformations

Parallelizing is reordering operations; optimizing
by making various things happen in parallel

Translation Templates

* |t's about pattern matching & substitution

— Patterns contain terminals
— Also contain nested patterns (nonterminals)

e General form:

nonterminal: {list of terminals & nonterminals}

{output pattern}

1f (expr) stat

* expr and stat are names of other patterns
* Jump over stat if expris false, create label

{code for expr}
Test

JumpF L

{code for stat}

i1f (expr) statl else stat2

* statland stat2 arejust stat
 Jump over stat2if statl was executed

{code for expr}
Test
JumpF L
{code for statl}
Jump M
L.: {code for statl2}
M:

1f (expr) statl else statZ2

* There are two jumps for the then clause...
why not reorder to make that the fast case?

{code for expr}
Test
JumpT L
{code for statl2}
Jump M
L.: {code for statl}
M:

while (expr) stat

* Loop body executes 0 or more times

L: {code for expr}
Test
JumpF M
{code for stat}
Jump L

M:

do stat while (expr),;

* Loop body executes 1 or more times
* Code is more efficient than for while loop

L: {code for stat}
{code for expr}
Test
JumpT L

while (expr) stat

* |Improve while by using do-like sequence
enclosed in an if

{code for expr}
Test
JumpF M

L: {code for stat}
{code for expr}
Test
JumpT L

M:

while (expr) stat

* |Improve while by jumping into loop...
nothing wrong with unstructured code here

Jump M
L: {code for stat}
M: {code for expr}
Test
JumpT L

for (exprl; expr2; expr3) stat

* Really “syntactic sugar” for:

exprl,

while (expr2) {
stat;

L: expr3,

}

* Only difference is continue goes to L

DO label var=exprl, expr2, expr3

Fortran DO loops imply lots of stuff, e.qg.:

— |Is loop counting up or down?

- If varis a real, Fortran requires converting
the index into an integer to avoid roundoff

Implying more information is just more syntactic
sugar — use a simpler source language pattern
to encode a more complex, but common, target
code sequence

switch (expr) stat

Not equivalent to a sequence of if statements;
this is C's version of a “computed goto”

The case labels inside stat are merely labels,
and so is default, which is why there's break

Depending on case values, compilers code as:
— Linear sequence of if-gotos

— Binary search of if—gotos

— Index a table of goto targets

— Combinations of the above...

Assignments & Expressions

This is where the computation happens

Assignment notation was a major advance;
Cobol's add ¢ to b giving ais a=b+c

Expressions (expr) compute a value

Assignments associate a value with a name:

name=expr

name=expr ?

Not really math; it binds a value to a name

Names (lval) are places that can hold values;
registers or main memory addresses

Expressions (rval, value) are computed results

Consider some examples:
a=5 associates value 5 with name a
5 1S hot a hame
a=b associates a copy of b's value with a

a=5

* Let's generate simple stack code for this...

Push a ;push &a on stack
Push 5 ;push the value 5
Store ; *(&a)=5, remove &a

* but where's the ; at the end?
— C has an assignment operator
— ; simply means discard the value produced

=5;

Push a ;push &a on stack
Push 5 ;push the value 5
Store ; *(&a) =5, remove &a
Pop ;discard remaining 5

b= (a=5) ;

* b gets a copy of a's value

Push b ;push &b on stack
Push a ;push &a on stack
Push 5 ;push the value 5
Store ; *(&a)=5, remove &a
Store ; * (&b) =5, remove &b
Pop ;discard remaining 5

b+c

What does b+c mean - what's added?
It adds rvals to produce an rval result.

What does b.c mean?
It adds lvals to produce an lval result:
&b + offset_of field c

What does b[c] mean?
It adds lval+rval to produce an lval result:
&§(b[0]) + (c * sizeof(b[c]))

If you know which are Ivals and rvals, it's easy...

a= (b+c) ;

Push a ;push &a on stack
Push b ;push &b on stack

Ind ;replace &b with * (&b)
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Add ; replace b, ¢ with b+c
Store ; a=b+c, remove &a

Pop ;dliscard remaining b+c

a= (b+c) ;

Push a ; push &a on stack
Push b ;push &b on stack

Ind ;replace &b with * (&b)
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Add ; replace b, ¢ with b+c
Store ; a=b+c, remove &a

Pop ;discard remaining b+c

1f (b+c) stat;
Push b ;push &b on stack
Ind ; replace &b with *(&b)
Push c ;push &c on stack
Ind ; replace &c with *(&c)
Add ; replace b, ¢ with b+c
Test ;tests and pops
JumpF L

{code for stat}

1f (b<ec) stat;
Push b ;push &b on stack
Ind ; replace &b with *(&b)
Push c ;push &c on stack
Ind ; replace &c with *(&c)
Lt ; replace b, ¢ with b<c
Test ;tests and pops
JumpF L

{code for stat}

Push
Push
Ind
Push
Push
Ind
Mul
Add
Store
Pop

a=(b+(5*c)) ;

nu OTOw

; push &a on stack

; push &b on stack
;replace &b with * (&b)
; push 5 on stack

; push &c on stack
;replace &c with *(&c)
7O, C becomes b*c

;b, o0*Cc becomes bt+5*c
;a=b+b*c, remove &a
;discard b+5*c

a=b[c];

Push a ;push &a on stack

Push b ;push &b on stack

Push c¢ ;push &c on stack

Ind ;replace &c with * (&c)
Push 4 ;push sizeof(blc])

Mul ;Cc, 4 becomes c*4

Add ; &b, c*4 becomes &b+c*4
Ind ;& (b[c]) becomes b[c]
Store ;a=b[c], remove &a

Pop ;discard b[c]

Different Models

Stack code — easy to generate, as you saw...

General Register code

- 3 operand (MIPS): regl = reg2 op reg3
- 2 operand (IA32): regl = regl op reg3
— accumulator: acc = acc op mem

Load/Store vs. memory operands:
regl = regl op mem

HLL-oriented Memory-to-Memory (IAPX432):
eg9.,al 1] =b[j] *c[k]

Push
Push
Push
Ind
Push
Mul
y:Velol
Ind
Store
Pop

QoW

a=b[c];

; stack:
; stack:
; stack:
; stack:
;stack:
; stack:
; stack:
; stack:
; stack:
; stack:

&a,
&a,
&a,
&a,
&a,
&a,
&a,
blc]

&

&b, &c
&b, ¢
&b, c,
&b, c*4
& (blc])
bl[c]

a=b[c];

Push a ; rO0=&a

Push Db ; r0=8&a, rl=&b

Push c ; rO0=&a, rl=&b, r2=&c

Ind ;r0=&a, rl=&b, r2=c

Push 4 ; rO0=&a, rl=&b, r2=c, r3=4
Mul ; r0=&a, rl=&b, r2=c*4
Add ; r0=&a, rl=&(b[c])

Ind ; r0=&a, rl=b[c]

Store ; rO0=b[c]

Pop

a=b[c];

Push a ; r0=&a Li r0,a
Push b ; r1=8&D Li rl,b
Push c¢ ; T2=6&C Li r2,c

Ind ; r2=C Lw r2,(Qr2
Push 4 ; r3=4 Li r3,4

Mul ; r2=c*4 Mul r2,r2,r3
Add ;r1=&(b[c]) Add rl,rl, r2
Ind ;rl=b[c] ILw rl,@rl
Store ; rO0=b[c] Sw rl, @rO

Pop

Two Vs. Three Operands

e Uses fewer instruction bits...

MIPS three of 32 registers takes 3*5=15 bits;
IA32 two of 8 registers takes 2*3=6 bits

* From stack code, it doesn't cost anything

* With a smart compiler avoiding recomputation
(e.g., via common subexpression elimination),
might need to fake three operands:

Op rl,r2,r3 becomes Mov rl,r2
Op rl1,r3

Two Vs. Three Operands

Li r0, a Li 0, a
Li rl,b Li rl,b
Li r2,c Li r2,c
Lw r2,dr2 Lw r2,dr2
Li r3,4 Li r3,4
Mul r2,r2,r3 Mul r2,r3
Add rl,rl,r2 Add rl,r2
ILw rl,@rl ILw rl,@rl

Sw rl,@xO Sw rl,@rO

Load/Store Vs. Mem Operands

* Easier to build pipelined implementation if
load/store are the only memory accesses
(as in RISC architectures like MIPS)

* Memory used to be faster and processor
couldn't fit lots of registers...
- Memory operands mean fewer instructions
— Pairs well with two operand forms (1A32)
— Accumulator must allow memory operands
(where else to get second operand?)

Load/Store Vs. Mem Operands

Load/Store 2 Operand Accumulator
with Mem with Mem

Li 0, a

Li rl,b Lw r0, @b Lw @b
ILw rl,@rl

Li r2,c

Lw r2,dr2

Add rl,rl,r2 Add r0,@c Add (c
Sw rl, @O Sw r0, Qa Sw (da

How Many Registers Needed?

Li r0,a ;1 register
Li rl,b ;2 reglsters
Li r2,c ; 3 reglsters
Lw r2,dr2 ; 3 reglsters
Li r3,4 ;

Mul r2,r2,r3 ;

Add rl,rl,xr2 ; 3 registers
Lw rl,@rl ; 2 reglsters
Sw rl,@dxO ; 2 reglisters

Spill/Reload Fakes More

Li r0,a
Li rl,b
Li r2,c
ILw r2,@r2
Li 3,4

Mul r2,r2,r3
Add rl,rl, r2
ILw rl,@rl
Sw rl,@QrO

Li r0,a

Li rl,b

Li r2,c

ILw r2,@r2

{ Spill t0=x0 }
Li 0,4

Mul r2,r2,r0
Add rl,rl, r2

ILw rl,@rl

{ Reload r0=t0 }
Sw rl,@QrO

HLL Memory-to-Memory

* Advantages:

— Easier to write complex assembly code
(but we use compilers for that now and this
actually makes the compiler harder to write)

— Can enforce strict typing, software reliability
(but complicates hardware a lot)

— Allows glueless parallel processing by
keeping all program state in memory
(but memory access is s-l1-o-w)

* |APX432 did this... nothing since then

Parallel Machines

* There are two flavors of large-scale parallelism:
— MIMD: different program on each PE
(multi-core processors, clusters, etc.)
- SIMD: same instruction on PE's local data
(GPUs - graphics processing units)

* Each MIMD PE runs a sequential program...
nothing special in code generation

— If one PE executes some code, all must
— Can disable a PE that doesn't want to do it

SIMD Code

 There are two flavors of data
— Singular, Scalar: one value all PEs agree on
— Plural, Parallel: value local to each PE

* Assignments and expressions work normally,
except when mixing singular and plural:
— Singular values can be copied to plurals
— Plural values have to be “reduced” to a single
value to treat as singular; for example, using
operators like any or all

* Control flow is complicated by enable masking...

1f (expr) stat

* Jump over stat if expris false for all PEs;
otherwise, do for all the PEs where it's true

PushEn ; save PE enable state
{code for expr}

Test ;Lest on each PE...
DisableF ;turn off 1f false
Any ;any PE sti1ill enabled?
JumpF L ;any PE must do stat?

{code for stat}
L: PopEn ; restore enable state

if (¢ < 5) a = b;

* Masking idea can be used in sequential code to
avoid using control flow: if conversion
* The above can be rewritten as:

a= ((c <5) ?2 b : a);

* Bitwise AND with -1 can be used to enable,
while AND with O disables, thus simply OR:

-(c < 5);
((t & b) | ((~t) & a));

t
a

while (expr) stat

 Keep doing stat while expr is true for any
PE; once off, PE stays off until while ends

PushEn
M: {code for expr}
Test
DisableF
Any
JumpF L
{code for stat}
Jump M
L: PopEn

; save PE enable state

;Lest on each PE...

;turn myself off 1f false
;any PE still enabled?
;exit 1f no PE enabled

; restore enable state

Functions & Subroutines

* Mixes expressions and control flow...

* Complex!
— Support of recursion

— Lots of stuff that has to happen
- .. but

specifies it (e.g., as part of the ABI)

* We'll focus on generically what must happen

Simple Subroutine Call/Return

* Jump, but first save return address on stack

sub () ; Push L
Jump sub
L:
sub () { sub:
return,; Ret ; PC=pop

Simple Subroutine Call/Return

* Jump, but first save return address on stack
* Very common, and L is actually PC value when
executing, so often a special instruction:

Push L Call sub
Jump sub

Stack Frame

The return address isn't all we must pass...

Everything for a particular call is a stack frame:
— Return address

— Return value (for a function)

- Argument values

— Local variables

— Temporaries

— Optionally, a frame pointer (FP)

Call/return and stack use is specified in ABI

Function Call

* Reserve space for return value first...
* Then push args & remove them on return

a = f£(5); Push a
Push 0 ;ret wvalue
Push 5 ;push arg
Call £
Pop ; POP arg
Store
Pop

Function Call

f(int b) {

}

return (b+1) ;

Push 16
ASP
Push 16
ASP

Ind
Push 1
Add
Store
Pop
Ret

Function Call

Push 16 ;o0ffset of ret wvalue (0)
ASP ;add stack pointer

Push 16 ;stack offset of b

ASP

Ind ;get rval of b

Push 1 ;add 1

Add

Store ; store 1nto ret wvalue
Pop ; remove extra copy

Ret

Frame Pointer

* Where did the stack offsets come from?

f: Push ; stack offset of ret value

Push ; stack offset of b

* Frame pointer (FP) points at a fixed point in the
stack (saved FP), forming a linked list of frames

Function Call Using FP

* Mark pushes old FP, makes new FP point at it

* Release restores old FP, removes frame

a

£(5);

Push a

Push 0 ;ret wvalue
Push 5 ;push arg
Mark

Call £

Release

Pop ; POP arg
Store

Pop

Function Call Using FP

f(int b) { f: Push 4 ;always £
return (b+1) ; AFP
} Push -4 ;always b
AFP
Ind
Push 1
Add
Store
Pop
Ret

What Is Passed For Args?

Call by value: copy of rval
— used by most languages (C, Java, etc.)
— considered safest way to pass values

Call by address or reference: copy of lval
— used by: ForTran, C* reference, Pascal var
— efficiently avoids copying big data structures

Call by name or thunk: pointer to function
to compute lval as it would have thunk to earlier
— used by: Algol, some Lisp variants

The Operating System (0S)??

* Trusted code that is always present to
control resource allocation at runtime;
it is privileged to touch all hardware

* |Invoked by a privileging “call” to trusted code
— User program issues a system call
— Interrupt from an 1/O device (e.g., timer)

* OS “return” removes privilege, can return to
a place it didn’t come from (e.g., timesharing)

Enough Generalization: MIPS!

* We'll be using MIPS throughout this course

* A simple, 32-bit, RISC architecture:
— 32 general registers, 3-register operands
— Strict load/store for memory access
— Every instruction is one 32-bit word
- Memory is byte addressed (4 bytes/word)
— Closely matched to the C langauge

MIPS Registers ($ nhames)

Szero
Sat
Sv0-Svl
Sa0-$a3
St0-$t9
$Ss0-$s7
Sk0-Sk1
$gp

$sp

Sra

constant 0

reserved for assembler
value results
arguments (not on stack)
temporaries

save before use
reserved for OS kernel
global pointer (const)
stack pointer

frame poilnter

return address

MIPS ALU Instructions

* Either 3 reg operands or 2 regs and immediate
16-bit value (sign extended to 32 bits):

add Srd, Srs, Srt #frd=rs+rt
addi Srt, $rs,immed #rt=rs+immed

* Suffix of i means immediate (u for unsigned)
* The usual operations: add, sub, and, or, xor

* Also has set-less-than, s1t: rd=(rs<rt)

MIPS Load Immediate

* Can directly load a 16-bit immediate:
addi S$rt,$0,imm #rt=0+imm

* For 32-bit, generally use 2 instructions to load
upper 16 bits then OR-in lower 16 bits:

lui S$Srt,imm frt=(1mm<<16)
ori S$rt,Srs,imm #rt=rs| (imm&Oxffff)

e MIPS assembler macro does it as 1i or la:

li Sdest, const fdest=const

MIPS Load & Store

* Can access a memory location given by a
register plus a 16-bit Immediate offset:

lw Srt,off (Srs) #rt=memorvy [rs+off]
sw Srt,off (Srs) #memory [rs+off]l=rt

* Byte and halfword using b and h instead of w

MIPS Jumps

* MIPS has a jump instruction, j:

j address #PC=address

* (Call saves return address in $ra: jal addr
* Return is jump register using jr $ra
* Limited range (26 bits) for § or jal;

can do full 32-bit target using jump register:

la $t0, address #tO0=address
jr S$tO0 #PC=t0

MIPS Branches

* MIPS has only conditional branches:

beq Srs,Srt,lab #if rs==rt, PC=lab
bne $rs,$rt,lab #if rs!=rt, PC=lab

* The target is encoded as a 16-bit immediate:
immediate = (lab-(PC+4))>>2

* Branch over jump to target distant address

MIPS Comparisons

* Truthin Cis "non-0,” so compare to $0
* Equality comparison can use xor or sub

* |nequality comparisons all use s1t:
St0=St1l<$t2 slt $tO0,S$tl, Sst2
St0=Stl1>=5t2 I St0=Stl<s$t2
St0=St1>$t2 slt $tO0, $t2, s$tl
St0=Stl1l<=5t2 I St0=Stl1l>5t2

MIPS Assembler Notation

* One assembly directive or instruction per line
e # means to end of line is a comment

* Labels look like they do in C, followed by a :

* Directives generally start with a

.data #the following is static data
.text #the following is code

.globl name #name is what C calls extern
.word value #initialize a word to wvalue

.ascii “abc” #initialize bytes to 97,98, 99
.asciiz “abe” #initialize bytes to 97,98,99,0

Summary

There are many different assembly languages,
but there are many similarities

ISA specifies instructions (ABI for conventions)
MIPS is a very straightforward RISC made for C

You don't need to write lots of assembly code
— tweak code output by a compiler
— write little wrappers for what compiler can't do

MIPS References & Tools

 Reference materials:
— The course website
— The textbook
— MIPS ¢cec -8

* Simulator we prefer is SPIM, WWW version:

http://garage.ece.engr.uky.edu:10043/cgi-bin/cgispim.cgi

* There’s even a little C-subset compiler:

http://garage.ece.engr.uky.edu:10043/cgi-big/mucky.cgi

http://garage.ece.engr.uky.edu:10043/cgi-bin/cgispim.cgi
http://garage.ece.engr.uky.edu:10043/cgi-big/mucky.cgi

