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Abstract
Increasingly sophisticated algorithms, including trained ar-

tificial intelligence methods, are now widely employed to enhance
image quality. Unfortunately, these algorithms often produce
somewhat hallucinatory results, showing details that do not cor-
respond to the actual scene content. It is not possible to avoid all
hallucination, but by modeling pixel value error, it becomes fea-
sible to recognize when a potential enhancement would generate
image content that is statistically inconsistent with the image as
captured. An image enhancement algorithm should never give a
pixel a value that is outside of the error bounds for the value ob-
tained from the sensor. More precisely, the repaired pixel values
should have a high probability of accurately reflecting the true
scene content.

The current work investigates computation methods and
properties of a class of pixel value error model that empirically
maps a probability density function (PDF). The accuracy of maps
created by various practical single-shot algorithms is compared
to that obtained by analysis of many images captured under con-
trolled circumstances. In addition to applications discussed in
earlier work, the use of these PDFs to constrain AI-suggested
modifications to an image is explored and evaluated.

Introduction
Although noise in images has been the subject of many re-

search papers[1], and noise often is modeled using a probability
density function (PDF), the PDF is commonly a distribution that
is assumed rather than empirically measured. Two key assump-
tions commonly made are that:

1. The PDF is not a function of the coordinates within the im-
age, but is consistent over the whole image

2. There is no significant correlation between the ideal pixel
values and the noise components imposed upon their mea-
sured values

Neither of these assumptions is fully correct. However, making
these assumptions appears to dramatically improve the practical-
ity of computing and using a noise model. Given that modern
sensors often have tens of millions of sensels, not making the first
assumption is viable only for the simplest of noise models. It is
less clear that the second assumption is necessary, and arguably
the advantage in making that assumption is merely that it allows
a relatively simple equation to be used for the model rather than
empirical data.

The literature discusses a wide range of parametric PDF
distributions[1]. Perhaps most commonly assumed is a Gaussian
(normal) distribution, which characterizes the noise distribution

by a curve with a single parameter, σ , where σ2 is the variance.
Gaussian distributions are symmetric around the ideal (mean)
value, so other types of distributions are used for skewed his-
tograms: Rayleigh, Erlang, and Exponential distributions. Each
of the above distributions is believed to be a good model of noise
coming from particular types of sources. Although it is unlikely
to occur in real images, Uniform noise is often assumed where
simplicity of the model is most important. There are also some
noise sources that inject noise as Impulses (Salt and Pepper)
rather than continuous functions. While it is possible to obtain
a model that arbitrarily closely matches noise observed by using
a combination of the above noise distributions, the current work
suggests that there is no benefit in doing so, and the error intro-
duced by the second assumption above is at least as significant.

All the above formulaic distributions are simply attempting
to fit a curve to the pixel value histogram based on the assump-
tion that the curve will be easier to apply than a PDF computed
directly from a histogram. In a variety of earlier work it was
found that not only was using a PDF based on a histogram com-
putationally feasible, but it was not difficult to drop the second
assumption. Thus, the problem shifts from picking parameters
for a formula to efficiently creating the most accurate histogram
possible.

Over a period of nearly a decade, our research group has
been using empirical measurements to create a variety of types of
pixel value error models. The following section briefly describes
the structure of these PDFs. The catch is that it is only possible
to compute a true distribution of values when the ideal value is
known – and empirically, it never is known. Thus, for a wide
variety of applications significantly different methods have been
used to compute the histogram and transform it into a PDF. The
primary goal of the current work is thus to obtain a more precise
understanding of how accurately the results of various empirical
computation methods approximate the true PDF. A total of 48
different algorithms are implemented and evaluated in the current
work.

The Model
The pixel value error model investigated here is fundamen-

tally an empirically-determined type of probability density func-
tion (PDF). The model is based on computing a histogram in
which the ideal pixel values are given by the Y axis coordinate
and the actual values read are given by the X axis coordinate. The
biggest problem is that empirically the ideal value of any pixel is
typically unknowable, and thus the algorithms used to compute
the histogram, discussed later in this paper, involve various ap-
proximations and tradeoffs.



0

63

127

191

255

0 63 127 191 255

Figure 1. Pixel value error model for a noiseless capture

Many image formats record as many as 16 bits per sensel
sampled, so one might expect a 3×65536×65536 data structure
would be required for modeling pixel value error in an image with
three color channels. However, the uncertainty in the model gen-
erally exceeds the precision with which even a 3×256×256 table
can encode them, so sensel values may be scaled to fewer bits
to simplify the computation and reduce the size of the resulting
model. From various experiments, even the sensel value scaling
method used is apparently not critical; for example, as long as
the scaling is in the same space used to apply the model, even ap-
plication of gamma correction has relatively little impact on the
accuracy.

The computation of the model data structure begins with
computing a histogram for each color channel in which the value
at each point Vread ,Videal is the measured number of times Vread
was read when Videal was the true value for that spot in the scene.
The desired structure is essentially a 2D PDF for each color chan-
nel in which the conversion from histogram to PDF is performed
per row. Logically, if the true value is Videal , then the sum of
probabilities of all values possibly read when Videal was the true
value should sum to 1:

255

∑
i=0

model[i,Videal ] = 1 (1)

The histogram counts in each row of the model should thus be
normalized to meet this equation. However, the most useful nor-
malization is slightly different: make model[Vread ,Videal ] be the
probability that a value read as Vread due to noise could be rep-
resenting a true value of Videal . This suggests a normalization
of the probabilities not to a sum of 1, but to a maximum value
of 1. The probabilities normalized in this way can be viewed as
approximating the confidence that replacing the value Vread with
Videal would be correcting noise rather than making a change that
is inconsistent with the original scene.

The result of that normalization rule is a model that can be
visualized and manipulated as a multi-channel image in which
the model is computed independently for each color channel. Of
course, if the model is encoded as an image using 8-bit unsigned
integer values, the probabilities are scaled not from 0..1, but from
0..255.

If there is no noise, Vread is always equal to Videal and the re-
sult is the model shown in Figure 1. Elsewhere, these model im-

ages are shown without axis labeling because the model is really
defined over the interval from 0 to the maximum sensel value and
the 0..255 labeling merely shows the model quantization. Gen-
erally, the diagonal line should have the maximum value in each
color channel even with noise. Any noise distribution appears
as a horizontal spreading of that diagonal line. Empirically, the
shape of the noise distribution is usually not a close approxima-
tion to Gaussian nor any other simple parametric shape, but a
somewhat messy function of both the color channel and Videal .
For example, it is very common (and unsurprising) that the mea-
sured distribution often skews to the right at low Videal values
and to the left at high Videal values. The different sensitivities of
different color channels also tend to slightly separate error dis-
tributions by color. Given these irregularities, representation of
the pixel value error model as a multi-channel image is relatively
compact, easy to examine and manipulate, and fast to apply.

Why Model Pixel Value Error?
Given an ideal image and a corrupted version, a noise model

is easily constructed. However, when imaging a scene, except
under exceptionally carefully controlled circumstances, the ideal
image is not knowable. Thus, it has long been standard prac-
tice in the image-processing field to start with an assumed ideal,
noiseless, image and algorithmically add noise to produce one or
more corrupted versions. This is a fundamentally incorrect ap-
proach. For example, training an AI to denoise images by reduc-
ing algorithmically-imposed noise is dangerous because training
is a somewhat opaque process and tiny artifacts can dramatically
alter the learned behavior. For example, an AI that perfectly re-
moves perfectly-imposed Gaussian noise might be much less ef-
fective removing the noise that actually occurs in captured im-
ages, missing opportunities to remove noise in some areas while
making hallucinatory changes in others.

Additionally, in a very literal sense the thing that must be
modeled is usually not noise, but the error distribution in pixel
values as recorded from the sensor. This difference is not as sub-
tle as it might seem. There are many different mechanisms im-
posing noise: photon shot noise, leakage current, read noise, low-
level digital processing and encoding, etc. These mechanisms in-
teract and also are significantly affected by transient properties
such as the shutter speed (integration interval) and ISO (gain)
used and the temperature of the sensor. Accurately modeling
noise thus tends to result in a very complex model with many pa-
rameters, so often a distribution is assumed and accuracy suffers.
In contrast, for processing a particular image, all that is typically
needed is a model quantitatively describing the statistical error in
reported pixel values for that image – the model is essentially a
lookup table that gives probabilities for specific errors in values
reported.

There are four main reasons that a pixel value error model
of the form discussed here can be useful: (1) to evaluate noise
quality of images and regions within images, (2) to recognize
when scene content has or has not changed in a time series of
captures, (3) to distinguish noise from actual scene content, or (4)
to constrain image enhancements (even AI modifications) to be
consistent with knowable properties of the scene photographed.
The following subsections briefly overview these types of uses.



Evaluating Noise Quality Of An Image
Evaluating noise quality of a capture using a pixel value er-

ror model PDF expressed as an image is intuitive and straight-
forward. Visual examination of the PDF can be done using any
image editor or viewer, and the horizontal spreading of the diag-
onal line (seen in the noiseless PDF of Figure 1) directly shows
the distribution of value errors for all ideal values and on each
color channel. Differencing two PDF images in an image editor
trivially reveals how the distributions differ. Quantitative evalua-
tions can be done by various simple computations over the PDF
– and methods discussed later in this paper allow efficiently cre-
ating the PDF from a single image. For example, the average
error in pixel values (scaled to 0..255) in a color channel could
be computed as:

255
∑

j=0

255
∑

i=0
(abs(i− j)×model[i, j])

255
∑

j=0

255
∑

i=0
model[i, j]

(2)

Similarly, the signed average bias of the distribution (skew)
can be computed as:

255
∑

j=0

255
∑

i=0
((i− j)×model[i, j])

255
∑

j=0

255
∑

i=0
model[i, j]

(3)

Recognizing Scene Content Changes
Scene content can change over a time series of captures due

to motion of scene elements, changes in lighting, or changes in
the camera viewpoint. However, in most sequences a majority of
the scene content does not change from one frame to the next.
This principle figures prominently in most video compression
schemes. For example, MPEG-4 encoding efficiency depends on
effective motion estimation, which is accomplished using any of
several algorithms to match scene objects in pairs of frames[2].
Of course, the same object not only can change position from
one frame to the next, but even in stable lighting the pixel values
within the object can change by noise.

There is a fundamental ambiguity in seeing a pixel value
change over time: is the pixel value different due to scene change
or noise? This question generally cannot be answered with com-
plete certainty, but is approachable statistically using a model of
pixel value error. The question can be restated as what is the
probability that a pixel read as V0 in one frame is read as V1 in a
subsequent frame due to noise? The pixel value error model de-
scribed here can be used to answer this question by treating either
V0 or V1 as the Videal and the other as Vread .

For example, in a 2016 paper[3], this analysis was applied
to determine how much additional information is captured when
the framerate is increased to infinity. The key observation is that
with a finite number of photons lighting the subject over a given
interval, increasing framerate surprisingly quickly approaches an

Figure 2. Video frame and frame rendered by TIK

information content limit dominated by photon shot noise. Thus,
very high framerates do not imply proportionately higher data
rates or file sizes.

If it can be determined that a pixel value has changed by
more than is likely to be noise, that new sample provides informa-
tion about the new scene content. Conversely, if the pixel value
change over time is explainable as noise, then each sample is
potentially providing additional information about the unchang-
ing scene content in that position. The time sequence of values
of a pixel over a time interval in which all value changes were
explainable by noise can be averaged to provide a more accurate
value for the pixel over that entire interval. In the most fundamen-
tal sense, brightness is nothing more than average photon arrival
rate over time, and the average photon arrival rate can be known
more precisely over an interval in which more photon arrivals
are counted. This principle is the core concept underlying Time
Domain Continuous Imaging (TDCI)[6] and tik[7]. For exam-
ple, Figure 2 shows two renderings of the same scene over the
same time interval. The top image is a heavily-artifacted original
frame from a video captured at 240FPS. The relatively artifact-
free bottom image was rendered by examining that frame and,
for each pixel, replacing the frame’s pixel value with the average



Figure 3. Image enhancements: raw, kremy’17[4], and kremy’22[5] renderings of two crops

value over the multi-frame interval (extending both forwards and
backwards) for which that pixel had the same value within noise
bounds.

The error model in tik is computed by stacking two or more
DNG raws or JPEG images extracted from a video. Pairwise
votes are summed and the resulting histogram is smoothed and
processed to make it monotonic. The algorithm is a more com-
plex approximation to the methods described in a later section
here as raw-pair-box or JPEG-pair-box.

Distinguishing Noise From Scene Content
Image denoising essentially depends on distinguishing be-

tween noise and actual scene content: noise features should be
eliminated while scene features should be preserved or even en-
hanced. Using a pixel value error model provides an efficient
probabilistic discriminator. For example, KentuckY Raw Error
Modeler (kremy)[4][5] creates and uses a pixel value error model
to denoise (and slightly increase the resolution of) a raw image.
As can be seen in Figure 3, the processed images show substan-
tially reduced noise and a modest increase in visible scene detail.

For the original version of kremy[4], several methods were
tried to compute a 4×65536×2 error model – unlike the error
models used here, this model simply gives minimum and maxi-
mum bounds on what each 16-bit ideal pixel value could be read
as for each of four color channels (the two green channels in a
Bayer filter pattern were treated separately). Initially, a sepa-
rate program was written that used a rather complex voting al-
gorithm to compute this model from a sequence of two or more
16-bit DNG raw files captured of the same scene. That computa-
tion was then replaced with a computationally cheaper and much
more traditional noise estimation algorithm computing standard
deviations for consistently-shaded patches (and ignoring other
patches) within a single image. However, the final 2017 version
used a simpler filter instead of standard deviations to construct
the model from a single image. The denoising it implemented
was adjusting original pixel values within their error bounds to
be more consistent with similar textures found elsewhere in the
image.

The dramatic improvement in the 2022 version of kremy[5],
as seen in Figure 3, is primarily due to use of an error model of the
form described in this paper. The error model is computed from
a single raw image using a slight variation on what the current
work describes as a raw-one-box approach, but still using four
color channels. Different precisions for the error model were
also investigated and it was concluded that scaling-up from a

Figure 4. Magnified crop using PixelShift2DNG[8] and parsek[9]

256×256 to 512×512 or larger model "increased execution time
with the higher-precision probabilities merely making noise re-
duction slightly less aggressive"[5]. Instead of tweaking pixel
values within a likely minimum..maximum error range, the latest
kremy uses the error PDF to replace every pixel value with one
created by probability-guided texture synthesis.

Constraining Enhancements
Although it could be argued that kremy is also an exam-

ple of the use of a noise model to constrain enhancements, this
use is even more direct in Probabilistic Alignment Raw Stitcher
Experiment from Kentucky (parsek)[9]. This tool was created
to perform multi-shot super-resolution processing, especially on
pixel-shift capture sequences. Pixel-shift is a technique in which



the camera’s sensor is shifted by small, precise, amounts between
exposures in order to obtain a higher-resolution sampling of the
scene. Although computational alignment showed that the actual
shifts were not as expected due to tiny amounts of camera move-
ment, the primary defect in pixel-shift super-resolution is that
movement of scene objects can cause different color channels to
be sampling different scene content in the exposure sequence. A
yellow flower swaying in the breeze caused the artifacting seen in
the top image of Figure 4, whereas parsek recognized that the
errant pixel values are highly improbable and suppressed their
contribution in stitching. In fact, the entire stitching process in
parsek uses a confidence computation that is strongly driven by
the pixel value error model.

The error model used in parsek is is computed by a method
described here as raw-pair-box. However, because image pairs
are known to be slightly misaligned, parsek also applies con-
fidences that are computed as a function of the alignment error
of the pixels. For example, if the red pixel in one image that
is closest to a given red pixel in another image is sampling a
scene position 2/3 of pixel distant, then that pair is weighted less
than pairing with a red pixel in another image that is only 1/4
of a pixel distant. This approach works extremely well in part
because object movement in a scene frequently will change the
object’s apparent shape (e.g., the flower in Figure 4 twists as a
gust hits it), so MPEG-4-style motion estimation is less effec-
tive. Not coincidentally, the error model also decreases noise for
the super-resolution image because, unlike traditional pixel-shift
super-resolution, multiple samples that are the same within noise
are able to be averaged for each position.

Algorithms To Create The Model
The primary contribution of the current work is the defini-

tion, implementation, and evaluation of 48 different algorithms
for computing a pixel value error model. This included the cre-
ation of an open-source implementation called errpdf. The re-
sults of all methods are intended to converge on identical models
for identical inputs, although there are significant differences in
the computational cost and in the quality of the model produced.
All these algorithms also share the property that they assume no
a priori knowledge of an ideal, noiseless, reference image.

The 48 different algorithms represent all combinations of
options for three phases of processing. There are three options
for the input handling, four basic approaches for computing the
histogram from that image data, and four algorithms used to
convert the histogram into the pixel value error PDF. These are
overviewed in each of the following subsections.

Handling Of Input Images
There are literally hundreds of different image formats in

common use and errpdf can process most of them. However,
independent of input file format, the processing within errpdf
largely assumes that the image data can be processed using 8 bits
per color channel with three color channels: Red, Green, and
Blue.

The OpenCV library[10] directly gives errpdf the ability to
read files in a wide variety of image formats that are largely in-
tended for image viewing. Windows bitmaps (BMP), JPEG and

JPEG 2000, Portable Network Graphics (PNG), WebP, Portable
Pixel Map (PPM), and Tag Image File Format (TIFF or TIF) are
among the most commonly used. It is important to note that TIFF
is not really an image format, but a way to structure the contents
of a file as a collection of tagged fields; what OpenCV supports
is the "Baseline TIFF" specification, which encodes RGB images
either without compression or compressed using one of two dif-
ferent Run Length Encoding (RLE) schemes. All of these file
formats share the basic property that each pixel has data for all
three color channels.

Thus, the first algorithm choice is to process the image data
as an array in which each pixel site has an 8-bit unsigned value
for each color channel. While this seems an obvious choice, most
image capture devices do not capture all three colors at each pixel
location. Typically, a Color Filter Array (CFA) is used to pass
only one color channel at each sensel location. The result is that
for any given pixel, two of the three color channel values are
not directly detected by the corresponding sensel, but are inter-
polated from neighboring sensels that had the desired filter color.
This interpolation process, also known as demosaicing, may be
as simple as averaging the nearest same-color sensel values or it
can be as complex as applying a trained AI to compute the miss-
ing color values. There are two main problems with this:

1. Interpolating values generally involves combining values
from multiple sensels, and any such procedure inherently
tends to reduce noise. The result is that computing a pixel
value error model from, for example, a JPEG image will
tend to significantly underestimate the noise in the sensel
measurements. It is worth noting that JPEG in particular
uses lossy compression in a YUV colorspace, and those
transformations also tend to smooth the image data, reduc-
ing the apparent noise. JPEG images produced by many
cameras also apply various transformations to repair lens
defects ranging from correcting lens pincushion or barrel
distortion to color-dependent scaling to correct transverse
(also called lateral) chromatic aberration – other forms of
interpolation that also tend to reduce apparent noise.

2. The two interpolated color channels for each pixel multiply
the computational effort spent in performing any analysis.
In effect, the analysis is done over three times as many val-
ues as there were sensels. Thus, processing time tends to be
about 3× as long as necessary.

Simply processing only the color information that came from a
sensel can avoid these disadvantages despite using a viewing-
oriented file format like JPEG. However, this approach only can
be fully effective where the encoding is not too lossy and no sig-
nificant corrections have been applied. It is also necessary that
the CFA pattern be known so that errpdf knows which color
channel to trust in each pixel. Typical CFA patterns consist of
a repeating 2×2 block with two Green filters, one Red, and one
Blue. For example, the Canon PowerShot SX530HS camera used

for some tests has the repeating pattern , which can be speci-
fied on errpdf’s command line as -c rggb.

The third input option for errpdf is raw image files. The
word "raw" is not a file format, but a descriptive word imply-



ing that the sensor data are not "cooked" but are available essen-
tially as they came from the sensels in the encoding used. For
example, there typically are no or very few corrections applied
and the data is not interpolated, but one color channel per sensel.
Most raw formats are encoded as TIFF files, but with a variety of
manufacturer-specific fields and encoding schemes. For exam-
ple, ARW files are produced by Sony cameras, CR2 by Canons,
NEF by Nikons, etc. Adobe has been pushing a particular TIFF
variant, DIgital Negative (DNG), as a standard raw representa-
tion, but the transformation from many camera raw formats to
DNG is not lossless.

Unfortunately, OpenCV does not directly understand
raw formats. Thus, errpdf uses either dcraw[11] or
unprocessed_raw[12] as a helper application. The output from
either of those tools is a file in a monochrome Portable Gray Map
(PGM)[13] with an unsigned 16 bit value per pixel. OpenCV
can read a PGM, but the PGM is not interpreted as a color im-
age. Thus, it is again necessary to use a command line argu-
ment to specify the CFA pattern as well as -r to specify use
of a raw decoder. The command line option -d specifies that
dcraw should be used for raw decoding instead of the default
unprocessed_raw; dcraw is no longer maintained, but supports
some older raw formats that unprocessed_raw does not. The
raw format decoding step adds a little execution time, but the pro-
cessing of raws is nearly as fast as the processing of CFA-indexed
JPEGs.

Histogram Generation
Empirical creation of a histogram recording differences

from Videal is complicated by the fact that Videal is fundamentally
unknowable. Thus, the question is how to obtain a reasonable
approximation.

Although it is not guaranteed, it is reasonable to assume that
if we capture the exact same scene with the same camera settings
multiple times to compute an average value for each pixel loca-
tion, those average values should approximate Videal[14]. The
capture of such an image sequence is significantly more difficult
than one might assume. Not only must the scene and camera set-
tings be completely controlled, but earlier work[9] revealed that,
under typical conditions, a camera mounted on a solid tripod of-
ten does not maintain sensel-level alignment across a series of ex-
posures. Even camera-generated movement must be minimized
by actions such as placing an SLR’s movable mirror in the up
position, locking the focus and anti-shake mechanisms, disabling
the mechanical shutter, and using a lens that does not automati-
cally stop-down the aperture for each exposure.

Some types of noise, such as that imposing a fixed pattern
across the sensor, are not removed by averaging multiple captures
– but we are explicitly not creating a model that is a function of
the coordinates within the image. It is also possible to correct
fixed pattern noise before the images are input to this algorithm,
and most cameras will at least partially correct even the "raw" im-
age data using a "bad pixel" list and subtracting a dark exposure
if the shutter speed is long. More fundamental is the question of
the correctness of averaging as the computation. The averaging
done in errpdf is simply finding the arithmetic mean, which has
also been used by others[14], but can be significantly impacted

by outliers in the distribution of values. Using the median or
mode would reduce the influence of outliers, and it also is possi-
ble to directly remove outliers meeting a specific condition from
the mean computation, but all of those methods would make the
computation of an "average" image significantly more complex.
Despite these potential flaws, the current work treats the aver-
age image as the best practically knowable approximation to the
ideal image: the reference truth against which the quality of other
methods can be judged.

The computation of the histogram using the average of a se-
ries of captures not only requires the controlled sequence of cap-
tures, but two passes over all images. The first pass computes the
average image while the second records the histogram by incre-
menting model[Vread ,Vaverage] for each pixel location. If the CFA
pattern is specified, only the color channel of the corresponding
sensel is processed for each pixel; otherwise, all three color chan-
nels are used from each pixel location. Use of this algorithm is
specified by a for averaging in errpdf.

A much cheaper alternative is the pair differencing algo-
rithm specified by p. This uses a controlled sequence of as few
as two images without computing an average. Instead, the first
image is treated as the source of Videal values and the second as
Vread values. While this is clearly not as good an approximation
as the averaging approach using many captures, treating the data
from just two images in this way is less likely to underestimate
the noise than comparing to the average of the two images. How-
ever, the main reason for including the algorithm here is that this
type of histogramming has been used in earlier software[7][9].
The primary advantage of this method is that, when applied to
each pair of temporally adjacent images in a longer sequence,
the histogram computation can be done in a single pass over the
image sequence.

The last two histogram computation algorithms compute the
histogram from a single image. Relatively few alternative han-
dlings of noise operate on one capture without a "ground truth"
noiseless reference[15], but this ability is a huge benefit in that
it avoids the problematic capture of a controlled sequence of im-
ages and also can model noise issues that are unique to a partic-
ular capture. For example, even in a tightly-controlled capture
sequence, it is likely that the sensor temperature will increase
with capture sequence number; deriving the model from a sin-
gle capture has the potential to more accurately account for the
exact conditions that existed for that capture. The problem is
that, as for the pair computation method, Videal is not known. In
both these single-image histogram computations, the histogram
is driven by examining neighboring pixels; note that if a CFA is
specified, only sensels sampling the same color channel are con-
sidered when identifying a pixel’s neighbors.

The first method for computing a histogram from one image
is specified by o. The algorithm is based on the idea that there
is a very high probability that Videal for a given pixel and at least
one of its neighbors are essentially the same. This assumption is
obviously false in at least some cases, such as imaging stars in
a dark night sky. However, the occurrence of high-contrast de-
tail that covers just a single pixel is not common for most scenes
captured using high-pixel-count sensors and typical lenses. Most
CFA-based cameras even incorporate an Anti-Alias (AA) filter



that forces adjacent sensel sites to see similar light. Thus, it is
highly likely that the most similar of the eight neighboring pixel
values is within the noise bounds of the current pixel’s value.
This algorithm simply treats the current pixel value as Videal and
the nearest-valued neighbor as Vread . The catch is that more
different values, which may simply have more noise, are never
selected as nearest-valued to their neighbors; however, they are
still incorporated in the histogram because they will be the Videal
when finding their nearest-valued neighbor. The histogram com-
putation using this method is fast, but can be expected to under-
estimate noise.

The second method for computing a histogram from a single
image is specified by r for region. Various methods for comput-
ing noise in an image[1] suggest that only variations within "sim-
ilar patches" should be histogrammed, but how can one define
similarity without assuming at least an approximate model for
noise? The o method above asserts that the value of the current
pixel, Vhere, and the most similar valued neighbor, Vsimilar, prob-
ably represent the same Videal . If that is true, we argue that other
nearby pixels with values between Vhere and Vsimilar are likely
part of the same region. Thus, for each of the eight compass di-
rections, the value of the pixel two away is checked to see if it is
between the values Vhere and Vsimilar. If it is, given that the value
of the intervening pixel Vmid , model[Vmid ,Vhere] is incremented.
Compared to the o computation, this computation is somewhat
more expensive, but has the desirable attribute that while doing
a simple patch filtering, it is less likely than the o approach to
underestimate the noise.

Histogram To PDF Conversion
Given a histogram computed by one of the four approaches

described above, four different algorithms then can be used to
encode it as a pixel value error PDF were explored.

The first of these is designated n, for the normalization al-
gorithm. This is the PDF normalization discussed earlier, nor-
malizing the probabilities so that the maximum is 1.0, which gets
encoded as the unsigned byte value 255. All four alternative al-
gorithms for converting the histogram into a PDF end with this
same normalization step.

Typically, ∀i, model[i, i] will have a normalized probability
of 1.0 using the n algorithm. Not having that property would
have the seemingly nonsensical implication that Videal could be
outside of the noise bounds for the value Videal . However, a his-
togram can embody any distribution – even ones that appear very
strange. In addition to the diagonal having the highest probabil-
ity, intuitively, the probability in each row should monotonically
approach 1.0 for entries closer to the diagonal. This property
is forced if m is specified to make the output monotonic. The
method use to force the property processes each row of the his-
togram separately. Starting at the end of each row and working
toward the diagonal, if the current histogram bucket holds a lower
count than the previous, the previous bucket’s count is copied into
the next bucket. The same processing is then repeated working
from the minimum value to the diagonal.

An alternative way to force monotonicity can be specified as
b, the box algorithm. Since none of the four methods for building
the histogram can be certain about the ideal value for each pixel

position, it can be argued that incrementing model[Va,Vb] is just
as appropriate as incrementing model[Vb,Va]. Logically, all that
is known is that Va and Vb can represent the same Videal . Thus, the
box algorithm generates a new histogram in which, if the original
histogram had a count of K in model[Va,Vb], then K is added to all
positions in the new histogram in the box with corners Va,Vb and
Vb,Va. This box histogramming is relatively expensive computa-
tionally, but not prohibitive when the histogram has just 256×256
buckets. The new histogram is inherently monotonic toward the
diagonal in each row, but also enforces some continuity along the
diagonal – which is important because the histogram made from
a single scene (as all these methods construct it) is almost always
a very sparse sampling of all possible tonal transitions.

The fourth method for converting a histogram into a PDF
is specified by s, for smoothing – although it might be more
correct to call it a diffusion process. It replaces the original
histogram with a new histogram having a more smooth distri-
bution. However, this algorithm works by iteratively diffus-
ing the distribution along the diagonal. The smoothing car-
ries fractional counts from each row to its neighboring rows,
shifting the propagated fraction of the distribution along the di-
agonal so that the contribution from model[i, j] is shared with
model[i+ 1, j + 1] and model[i− 1, j − 1]. This is done using
many passes (currently, 128) running in alternating up and down
directions. This approach is even more effective than the box al-
gorithm in filling-in sparse histograms, but also is computation-
ally expensive. This method has the interesting property that it
does not force monotonicity where the original histogram was
dramatically non-monotonic.

Results
As was stated earlier, all 48 algorithms discussed here have

been implemented in a single software tool called errpdf. This
open source program is written in C++ using the OpenCV library.
Where appropriate, OpenMP[17] directives are used to specify
parallel execution to reduce runtime. The program input can be a
single image or a time sequence of two or more images of a static
scene.

There were a total of 1124 images in 34 different time se-
quences of test images processed. These included cases testing
all 48 algorithms: raw, CFA JPEG, and JPEG input processing
as well as different histogram methods and algorithms for con-
version into PDFs. The images were shot using three different
cameras selected to represent a wide range of noise behaviors:

• Sony A7RV: BSI CMOS 61MP full-frame mirrorless
• Canon PowerShot SX530HS: FSI CMOS 16MP super-

zoom, somewhat similar to a smartphone sensor but with
completely uncooked raws via CHDK[16]

• Canon PowerShot Elph160: CCD 20MP compact

Each capture sequence included between 25 and 64 captures and
each image was recorded as both raw and JPEG. The Sony cap-
tures used electronic shutter and a fully manual lens to minimize
potential movement during a capture sequence; the raw images
were encoded in the default ARW format. CHDK[16] was used
to obtain DNG raws from the Canon PowerShots, which nor-
mally would produce only JPEG files. In all tests using raw input,



Table 1: Relative Execution Cost

n ormal m onotonic b ox s mooth

a verage 24.3 24.3 24.3 24.4
p air reference 1 1.03 1.17
o ne 1.45 1.45 1.46 1.59
r egion 3.31 3.31 3.34 3.48

Table 2: Average Error In Error Estimates

n ormal m onotonic b ox s mooth

a verage +16% +27% -3% reference
p air -16% +56% +18% +18%
o ne -50% -16% -13% -9%
r region +50% +149% +30% +35%

the unprocessed_raw program was used as a helper to decode
the raw formats. Different sequences were captured at base ISO
and at the highest "recommended" ISO of that camera model.
Several test scenes were used, all lit using the well-controlled
lighting of a commercial 2×2-foot light box.

It is not practical to present all the data produced in this
evaluation within this paper. However a very concise summary is
easily given.

For the 48 algorithms used, the first choice is of the three
types of input: raw, CFA JPEG, or JPEG. Although the result-
ing models are not directly comparable because of the different
spaces in which pixel values are coded, raws produce the most
accurate models and processing JPEGs using knowledge of the
CFA pattern is slightly more accurate than trusting all color in-
formation in a JPEG equally. Execution cost of the processing is
also approximately 3× higher when the CFA pattern is not used.
For the remaining 4×4=16 choices of histogram method and al-
gorithm for conversion into a PDF, two tables provide a fairly
clear understanding of the behavior.

Table 1 gives the relative execution cost of each method over
all 34 different time sequences of input images. It is not surpris-
ing that constructing the histogram using averaging to compute
ideal pixel values is the most expensive, but the cost was only
24× that of the fastest method despite the average test case need-
ing to process 33 image files. Note also that the fastest was the
pair processing, which had to process two images while the re-
maining two algorithms only read a single image. In this light,
the region processing stands out as relatively inefficient.

It is difficult to fully characterize how the qualities of two
PDF models differ, but Table 2 gives good insight by simply
examining the differences in the average pixel value error pre-
dicted across all test cases. There is good reason to believe that
the as model is approximately as close to ideal as is empirically
knowable, so summarizing differences with that provides a good
quality metric. Although the closest to the as model was the ab
model, the os model was shockingly close, predicting just 9%
less error in pixel values. The performance of the region-based
analysis is equally surprising because it is far poorer than ex-

pected, especially for rm. Considering both tables together makes
a strong case for using as where possible (e.g., to perform cal-
ibration for shooting many images in similar studio conditions)
and os when the model must be computed from a single image
captured in the field.

To give a better feel for what real PDFs look like, Figure 5
shows a group of raw PDFs. Within that figure, the top left image
is an ISO 100 (base ISO) image of the scene averaged from 64
exposures and the PDF next to it is the resulting as PDF. The
image at the top right is a similar image created as the average
of 64 exposures at ISO 12800. The sixteen PDFs that follow are
computed from that ISO 12800 sequence and are presented in the
same grid order used for Tables 1 and 2. Although the differences
in the PDFs appear substantial, similar features appear in most
and the rightmost column’s smoothed PDFs are actually quite
similar statistically. Note that the noise difference between ISO
100 and ISO 12800 is easily visible in the PDFs although the ISO
12800 images from this Sony are not much noisier than either of
the other cameras at their base ISOs.

It is useful to note that different scene content does signif-
icantly alter the PDF computed, but primarily because the pixel
value errors are grossly under sampled with some scenes. For
example, for TIK[7], the primary test scene used was dominated
by a GretagMacbeth ColorChecker Color Rendition Chart[18].
When a similar scene was used here a very splotchy histogram
was produced. The relatively large areas of constant color and
brightness led to severe under sampling. Of course, this under
sampling is harmless in the sense that the portions of the PDF
that would be used in applying the PDF to enhance that image
are well sampled. The scene dependence simply means that to
use the PDF to fully characterize a camera’s noise behavior re-
quires either a carefully-selected scene or combining of PDFs
computed from multiple scenes.

Conclusion
For nearly a decade, our research group has com-

puted PDF pixel value error models in various ways in sup-
port of a wide variety of purposes. With the comple-
tion of the current work, the quality and performance dif-
ferences between different algorithms are much better under-
stood. The open source C++ program errpdf, available from
https://aggregate.org/DIT/ERRPDF, makes it unnecessary
to invent and code a new algorithm for each application.

Perhaps most significantly, the difference between error
models computed from a 64-exposure sequence and from one
image averaged just 9% using the best choice of algorithms. The
best such algorithm, os, is also computationally reasonably ef-
ficient. This is an important discovery because it is well known
that difficult-to-model dynamic factors like sensor temperature
can significantly alter the noise in a capture, but a model created
from each capture trivially accounts for such noise factors.

Thus, a PDF computed from one captured image can effec-
tively be used to filter proposed changes to that image so that any
alterations made are unlikely to change the knowable attributes
of the scene. For example, AI hallucinations can be blocked at
the pixel level by recognizing that they are unlikely content ac-
cording to the noise model computed for the original capture.



Figure 5. A7RV shot @ 100, as PDF; shot @ 12800, complete grid of raw PDFs: an am ab as pn pm pb ps on om ob os rn rm rb rs
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