
Use Of Sharp Image Content to Enhance Sharpness
of Other Image Areas
Henry Dietz and Hunter Durkee
Department of Electrical and Computer Engineering, University of Kentucky; Lexington, Kentucky

Abstract
Many lenses have significantly poorer sharpness in the cor-

ners of the image than they have at the center due to optical de-
fects such as coma, astigmatism, and field curvature. In some
circumstances, such a blur is not problematic. It could even be
beneficial by helping to isolate the subject from the background.
However, if there exists similar content in the scene that is not
blurry, as happens commonly in landscapes or other scenes that
have large textured regions, this type of defect can be extremely
undesirable. The current work suggests that, in problematic cir-
cumstances where there exists visually similar sharp content, it
should be possible to use that sharp content to synthesize detail
to enhance the defectively blurry areas by overpainting. The new
process is conceptually very similar to inpainting, but is over-
painting in the same sense that the term is used in art restora-
tion: it is attempting to enhance the underlying image by creat-
ing new content that is congruous with details seen in similar,
uncorrupted, portions of the image. The kongsub (Kentucky’s
cONGruity SUBstitution) software tool was created to explore
this new approach. The algorithms used and various examples
are presented, leading to a preliminary evaluation of the merits
of this approach. The most obvious limitation is that this ap-
proach does not sharpen blurry regions for which there is no
similar sharp content in the image.

Introduction
The current work is one of a multitude of approaches to

computational enhancement of image detail[1]. The goal here
is not to increase image size, as is done by various upscaling
or super-resolution algorithms, but to increase the level of de-
tail visible. Algorithms with this effect are commonly referred to
as methods for image restoration, sharpening, or deblurring. The
field of deblurring algorithms is particularly crowded, with a mul-
titude of methods published[2][3][4]. Blur in an image often is
the result of either motion of the subject relative to the camera or
poor focus, and those causes are the target of most test datasets
and algorithms[5]. However, those are not the only real-world
causes of blur.

The type of blur which is the primary target for improvement
here is caused by optical defects such as coma, astigmatism, and
field curvature. These defects are often suffered by low-cost or
ultra-wide lenses and are distinctive in that the impact on blur
varies dramatically with distance off the optical axis; it is com-
mon that image content that is roughly centered is entirely unaf-
fected. The key attribute is the fact that similar scene content is
imaged with very different degrees of blur for different parts of

Figure 1. Sample images shot with Fujian 35mm f/1.7

the image. This both makes the blur more visually disruptive and
implies that other portions of the scene have textures which could
be suitably applied to repair the blurred area.

This type of distinctive blur characteristic is evident in the
pair of images shown in Figure 1, both captured using a Fujian
35mm f /1.7. This lens probably was not designed to cover an
APS-C sensor. It not only suffers significant vignetting, but also
suffers from strong field curvature. The top image is a capture
of a flat, sharp, photo. This 2D subject makes the field curvature
of the Fujian lens quite obvious. Also noteworthy is the fact that
focus was not set on the center, but about halfway to the edge;
this results in a fairly apparent ring of sharpness. The lower photo
was captured directly of an outdoor scene. It also shows a ring
of best focus, although somewhat less blatantly due to the 3D
scene. Perhaps most interesting is that both these images began



as 24MP captures using a Sony NEX-7, yet the image defects
being discussed are clearly visible here despite the images having
been scaled from 6000×4000 to just 600×400 pixels.

The earliest deblurring approaches generally applied simple
filters to increase local contrast, such as unsharp masking or per-
haps deconvolution. Most more recent methods have centered
on using trained AI, so-called "deep deblurring" methods[5], to
replace portions of the content with credible sharp details. For
example, using AI that can recognize faces, a person’s slightly
blurry eye in an image might be replaced with a sharp image of
an eye including crisply-rendered eyelashes. The image detail
is thus greatly increased, but the result is not necessarily very
similar to the details of the scene that was photographed. The
implicit guarantee is that the details synthesized look like things
in the training set images, but the image being enhanced was not
in that set.

The motivation for the current work is to guarantee that the
details synthesized look like things in the image being processed.
There are a variety of inpainting algorithms that share the goal of
synthesizing content that is derived from and consistent with the
unaltered portions of the image being enhanced[6][7]. However,
inpainting replaces regions with content that can be arbitrarily
different from the original content. For example, the image con-
tent generated typically does not have the same average color
or brightness as the content it replaced. To be precise, that was
never the goal of traditional inpainting: inpainting synthesizes
textures to credibly connect the areas around a damaged or re-
moved region of the image. In contrast to traditional inpainting,
our goal here might be best described as overpainting: generating
enhanced textures that refine the image content rather than com-
pletely replacing it. This concept has been used before in kremy
(KentuckY’s Raw Error Modeler)[8][9] to reduce noise and pro-
vide a modest improvement in resolution. The main difference
between kremy and the approach here is that kremy’s improve-
ments are constrained by the concept of the captured image being
corrupted only by noise, whereas here overpainting is far more
aggressive, based on overpainting higher-resolution detail over
blurry areas that have lower resolution.

The current work is distinguished by two main features:

• The type of blur targeted for improvement is one often ig-
nored in other work: blur due to use of poorly-corrected
optics. Typically, this defect is most severe in the corners
of a capture due to optical flaws including coma, astigma-
tism, and field curvature. However, it also can happen, for
example, when a smudge on the front element of a lens
smears the corresponding portion of the image. How un-
desirable such blur is depends very strongly on the scene
content. These defects become particularly unpleasant in
things like landscapes, images where a 2D object occu-
pies a significant fraction of the frame, or other scenes that
have large textured regions because the texture of the region
changes (smears) as the viewer’s attention is moved across
the frame. These are the types of images emphasized in
evaluation of the new approach.

• The overpainting texture synthesis is not constrained by a
noise model, but is instead driven by a model of how much

Figure 2. Grayscale versions of sample images

blur is present. Precisely measuring blur is less straightfor-
ward than one might expect[10], but even crude approxi-
mations can be used to distinguish which regions should be
sources of texture and which should be overpainted.

The Prototype Implementation
The prototype discussed in this paper is a crude first imple-

mentation of this new approach. It is not capable of producing
results of the highest quality that this general approach should
allow, nor is it using a particularly efficient set of algorithms for
processing. The intent is that the current work will establish that
the concepts underlying this approach are sound and future work
will dramatically improve the implementation.

Kentucky’s cONGruity SUBstitution tool, kongsub, is a
quite simple C++ program using the OpenCV (OPEN Computer
Vision) library[11]. It is not tuned for performance, but does
use OpenMP[12] directives to obtain parallel execution of some
operations on multi-core processors. Runtime for processing a
small image, such as the 600×400 examples shown, is on the or-
der of 10 minutes using a typical multi-core desktop computer.
That speed is acceptable for a first prototype, but clearly must
be improved upon for the methods used by kongsub to become
widely adopted. The following subsections detail how the im-
ages are processed by kongsub and expose which tasks slow the
processing.



Figure 3. Tonally inverted Laplacians of the sample images

Convert the Image to Grayscale
After reading the input color image, the first processing step

is the production of a grayscale version. There are several rea-
sons why the color information is removed, including to facili-
tate the next processing step. However, the main reason is sim-
ply that the goal is to synthesize textures with which the blurry
image content can be overpainted – often, the same texture will
appear multiple times with a scene with slightly different col-
oration. Thus, the conversion to grayscale can be considered as
a mechanism to give priority to textural matches over coloration
matches. This transformation is trivially done using OpenCV’s
cvtColor() function to produce the images seen in Figure 2.

Compute a Blur Map
The first versions of kongsub took two images as input: a

color image to be improved and a monochrome image to serve
as a blur map. The map is intended to encode blur by some
version of the principle that the greater the blur around the cor-
responding pixel in the image to be improved, the brighter the
pixel value in the blur map. Ideally, the pixel values in the blur
map would directly correspond to a scaled blur diameter (or CoC
– circle of confusion). There are many different algorithms that
follow that principle, from simple Laplacian edge detection to
frequency-domain analysis to identify the dominant spatial fre-
quency of the image content at each pixel. Having the blur map
as an input allowed manual experimentation with various ways to

Figure 4. Blur maps for the sample images

construct the map, which quickly revealed that:

• Algorithmic construction of a map perfectly identifying
blur due to lens defects, as opposed to deliberate defocus,
motion blur, or low-spatial-frequency scene content, is an
open problem when given just a single image. It is rela-
tively easy to characterize a lens in this way by examining
multiple images, especially using controlled scenes (e.g.,
test charts), but the impact of optical defects can change
significantly with commonly-changed shooting parameters
– such as focus distance.

• Even a very imprecise blur map can be useful.

The current version of kongsub merely accepts an image from
which it creates a blur map using a very straightforward proce-
dure – which could be dramatically improved upon.

The first step in computing the blur map is edge detection.
The current software does this by computing a Laplacian to create
an image giving the divergence of the gradient of the monochro-
matic image’s tones. The Laplacian is largest where the edge is
strongest, but the strongest edge implies the smallest CoC. Thus,
it is most natural to think of the tonally-inverted Laplacian, as
shown in Figure 3, as being darker where the CoC is smaller.

In theory, the Laplacian could be directly used as a map.
However, the Laplacian features are essentially well-defined
edges. If a well-defined edge exists in a particular region within
an image, then by definition that region is not an area degraded



by blur. In other words, detection of a sharp edge implies the
lack of a sharp edge immediately adjacent is also a reliable sam-
pling of the scene. Thus, the edges detected in the original im-
age represent the cores of local regions not needing sharpening,
and simply thickening the detected edges can provide a better
blur map. A simple way to thicken edges and reasonably com-
bine them where edges meet is to apply a blur operation to the
Laplacian. In kongsub, this is done using a series of applica-
tions of OpenCV’s GaussianBlur() operation to convolve with
Gaussian functions of various sizes. The result of that is then his-
togram equalized using OpenCV’s equalizeHist() operation.
Figure 4 shows the blur maps resulting from this thickening of
the identified edges.

Are the blur maps shown in Figure 4 representing the right
attribute? It is easy to see that the blur maps have indeed iden-
tified where each image is sharp, and the doughnut-shaped ring
of sharpness for the top image is clear. The bottom image does
not have as obvious a doughnut shape because the scene it pho-
tographed was far from flat. Sharpness varies wildly in this scene
as the interplay of field curvature and the 3D depths to scene ele-
ments vary throughout the image. There is also a sharper edge in
the bottom image due to the high contrast between the blackness
of the fence and the light color of the grass – that edge arguably
does not belong in the map. Ideally, the blur map should have
each pixel shaded in proportion to the size of the CoC at that
position; the blurred Laplacian does not ensure that, but can be
produced using a relatively simple computation.

Find Textural Patch Matches
Ideally, the blur map would tell us precisely how blurry each

pixel is, and that information could be used to to to find sharper
content that matches when blurred by the same amount. For ex-
ample, suppose position Xb,Yb has a blur diameter of D; then a
perfectly sharp (blur diameter 1) patch at Xs,Ys should be blurred
by a factor of D before attempting a textural match with the patch
at Xb,Yb. Unfortunately, the method currently used to compute
the blur map does not provide that information, so instead and
arbitrary amount of blur is applied to the original image to make
an image to search for matches.

Although OpenMP parallelism is used, nearly all of the
computational effort is expended in patch matching. For each
pixel location, the current version of kongsub searches for the
patch match which is the best match with the highest sharpness.
A viable alternative would be to use the weighted combination of
good patch matches, but preliminary experiments did not find that
beneficial. For each position Xb,Yb, each pixel value from the un-
blurred version of the best-matching patch at Xm,Ym is summed
into a result image and the weight for each pixel is also summed
in a weight image by which the final result is divided. Given a
3×3 patch size, each final pixel is thus the weighted average of
9 texture matches and the original value. The result of this is a
"raw" overpainted image, as shown in Figure 5.

This pattern matching and synthesis step could be dramat-
ically sped-up by using pattern hashing, which also could im-
prove the pattern match quality by allowing larger patterns and/or
more blur levels to be considered. The problem of matching
similar textures within an image is closely related to the prob-

Figure 5. Raw overpainted versions of sample images

lem of finding matching features from which alignments of mul-
tiple images can be computed. For example, the concepts of
the scale-invariant feature transform (SIFT)[13] and alternative
techniques[14] could be applied to this problem. The main differ-
ence would be that in feature matching many candidate point pat-
terns are discarded to increase selectivity of the match, whereas
here relatively poor (ambiguous) matches can still contribute to
the recovery of a sharper texture. However, investigation of such
approaches is beyond the scope of this introductory exploration.

Similarly, there is the potential to use trained AI methods to
generate the pattern structures to overpaint. Instead of training
on a set of images which may be unrelated to the image to be en-
hanced, it may be feasible to train a neural network exclusively
using the sharp regions of the image to be enhanced. Investiga-
tion of such methods is beyond the scope of the current work.

Normalize the Overpainted Image
While the overpainted image should be very similar to the

original, the weighted averaging process does not incorporate any
mechanism that would ensure colors are maintained. As a result,
the "raw" overpainted image will often have significantly differ-
ent, often more muted, coloration than the original. This is re-
paired by converting the RGB image into CIE L*a*b* colorspace
and combining the Lightness value from the overpainting with
the a* and b* values from the original image. Figure 6 shows the
result of this color correction.



Figure 6. CIE L*a*b* color correction of overpainting

As a final filter, the Laplacian is computed for the over-
painted image and the original and overpainted images are
merged using the Laplacian values as weighting factors. The
sharper the detected edges, the heavier the weighting given in the
weighted summation of original and color-corrected overpainted
images. Weighted transparency of the overpainting has the effect
of partially restoring local contrast; without this step, the over-
painted image will often have excessively dark regions. The final
result is shown in Figure 7.

While the very preliminary results presented here show rel-
atively modest levels of sharpening, the images are significantly
sharper in the blurriest regions while still appearing organic to
the scene. Of course, blurry regions for which no similar scene
content was sharply recorded will not be enhanced as credibly,
although this was not a major issue in the test cases processed.
The obvious exception is the handling of the sky in the upper left
corner of the top image and the upper right corner of the bottom
image. This comes from the fact that rather than being evenly
lit, the vignetting of the lens imposes a sharp enough gradient in
the corners to be incorrectly treated as blurred edges. Correct-
ing the vignetting before this processing appears to remedy this
issue. In summary, there is good reason to believe that a more
sophisticated implementation of this general approach could be
highly effective.

Figure 7. Final enhanced versions of sample images

Conclusion
Inpainting replaces undesired, missing, or damaged portions

of an image with synthetic content that is consistent with its sur-
roundings. In contrast, overpainting is the act of applying paint
over another layer of paint or surface, which is fundamentally dif-
ferent in that overpainted content need not completely replace the
underlying image content. In earlier work[9], it has been shown
that inpainting-like texture synthesis can be effective as an over-
painting technique to reduce noise and as a side effect mildly en-
hance sharpness. Here texture-based overpainting is directly used
to increase sharpness driven by a (crude) empirically-computed
map of blur in the original image.

The motivating problem is a class of blur which is empir-
ically common, but often omitted from study when exploring
sharpening or deblurring algorithms: lens defects which cause
uneven sharpness across the image, most often with blur increas-
ing farther off the optical axis. This class of blur has the inter-
esting property that there is often similar scene content imaged
with varying levels of blur, thus making it likely that imposing
textures from sharper areas onto blurry ones can produce a good
approximation to a sharp rendering of the actual scene content.

Viability of this approach was confirmed by creating
and testing a prototype open source C++ implementation,
kongsub (Kentucky’s cONGruity SUBstitution), which is avail-
able from https://aggregate.org/DIT/KONGSUB. Signifi-
cant future work is need to make a useful production tool.



References
[1] Yunliang Qi, Yang Zhen, Sun Wenhao, Lou Meng, Lian Jing,

Zhao Wenwei, Deng Xiangyu, and Ma Yide, "A comprehensive
overview of image enhancement techniques," Archives of Compu-
tational Methods in Engineering, pp. 1-25, 2021

[2] J. Biemond, R. L. Lagendijk and R. M. Mersereau, "Iterative meth-
ods for image deblurring," in Proceedings of the IEEE, vol. 78, no.
5, pp. 856-883, May 1990, doi: 10.1109/5.53403

[3] Ruxin Wang and Dacheng Tao, "Recent Progress in Image Deblur-
ring," arXiv preprint arXiv:1409.6838, 2014

[4] A. Mahalakshmi and B. Shanthini, "A survey on image deblur-
ring," 2016 International Conference on Computer Communication
and Informatics (ICCCI), Coimbatore, India, 2016, pp. 1-5, doi:
10.1109/ICCCI.2016.7479956

[5] K. Zhang, T. Wang, W. Luo, W. Ren, B. Stenger, W. Liu, H. Li
and M. H. Yang, "MC-Blur: A comprehensive benchmark for image
deblurring," IEEE Transactions on Circuits and Systems for Video
Technology, Volume 34, Number 5, pp. 3755-3767, 2023

[6] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles and Coloma
Ballester, "Image inpainting," SIGGRAPH ’00: Proceedings of the
27th annual conference on Computer graphics and interactive tech-
niques, pp. 417 - 424, doi: 10.1145/344779.344972, 2000

[7] Christine Guillemot and Olivier Le Meur, "Image Inpainting:
Overview and Recent Advances," EEE Signal Processing Mag-
azine, Volume 31, Issue 1, January 2014, pp. 127 - 144, doi:
10.1109/MSP.2013.2273004

[8] Henry Gordon Dietz, "Refining raw pixel values using a value er-
ror model to drive texture synthesis" in Proc. IS&T Int’l. Symp. on
Electronic Imaging: Image Processing: Algorithms and Systems XV,
2017, pp 56 - 66, doi: 10.2352/ISSN.2470-1173.2017.13.IPAS-084

[9] Henry Dietz, "An improved raw image enhancement algorithm using
a statistical model for pixel value error" in Proc. IS&T Int’l. Symp.
on Electronic Imaging: Computational Imaging, 2022, pp 151-1 -
151-6, doi: 10.2352/EI.2022.34.14.COIMG-151

[10] D. Shaked and I. Tastl, "Sharpness measure: towards auto-
matic image enhancement," IEEE International Conference on
Image Processing 2005, Genova, Italy, 2005, pp. I-937, doi:
10.1109/ICIP.2005.1529906.

[11] G. Bradski, "The OpenCV Library," Dr. Dobb’s Journal of Software
Tools, 2000

[12] OpenMP Architecture Review Board, "OpenMP Applica-
tion Programming Interface," Version 6.0, November 2024,
https://www.openmp.org/wp-content/uploads/OpenMP-
API-Specification-6-0.pdf

[13] David G. Lowe, "Object recognition from local scale-invariant fea-
tures," Proceedings of the International Conference on Computer Vi-
sion, Volume 2, pp. 1150-1157, doi: 10.1109/ICCV.1999.790410,
1999

[14] L. Juan and O. Gwun, "A comparison of sift, pca-sift and surf,"
International Journal of Image Processing (IJIP), 3(4), pp.143-152,
2009


