Programmable Liquid Crystal Apertures

and Filters for Photographic Lenses

Henry Dietz

ISS-120, 10:15, January 20, 2021

University of Kentucky Electrical & Computer Engineering

Liquid Crystal

- Liquid Crystal (LC)
 - LC physically changes polarization when a charge is applied
 - LC molecules "untwisted" \propto voltage
 - Active refresh or passive hold
 - Can wear out; AC drive outlasts DC
- Combine with sheet polarizers to make a continuously-variable transmissivity filter

So Many Questions...

- LC is a well-established technology, but usually isn't used for photographic filters
- Commodity LC components as filters?
 - Contrast ratio
 - Timing & refresh issues
 - Translucent vs. transparent
 - Polarization effects on the camera
 - LCD pixelization effects
 - Color LCD RGB subpixels

Liquid Crystal Light Valves (LCLV)

- Transmissive, usually clear \rightleftharpoons black
- · Usually single element (pixel), can be large
- Very low power; unpowered holds state
- · Adafruit sells two:
 - Both transmissive TN, black @ 4-5V
 - 31 x 33 x 2mm, #3627, @ \$2.95
 - 96.5 x 38 x 2mm, #3330, @ \$7.50

Front-Mounted LCLV Filter

- · An electronic/molecular shutter
- · A variable Neutral Density (ND) filter
- Controller (digital or analog)
 - Applies voltage to twist/untwist
 - Ideally driven as +/- \rightleftharpoons -/+

Arduino PWM Transmissivity

Arduino analogWrite() PWM Value

swap=(!swap); a=pwm>>1; b=pwm-a; a=127-a; b=127+b; analogWrite(shuta, (swap ? b : a)); analogWrite(shutb, (swap ? a : b));

LCLV Filter

No filter to clear-2EV1:4Clear to 5V black-9EV1:512

- · Issues:
 - Viewing bias: often 25° from \perp , +/-30°
 - Light passed is still polarized

LCLV Apertures & Apodizers

- Modify the out-of-focus (OOF) point spread function (PSF) of a lens by shaping aperture
 - Impose a coded aperture pattern
 - Shape bokeh
- Definitely feasible given measured good contrast ratio and modest diffusion...
- Would want a custom patterned electrode
 - Custom costs \$K, significant lead time
 - Tried laser patterning... nope.

The Problem With Polarization

- Semi-transparent mirrors don't correctly split linearly polarized light, a problem for
 - Phase-detect autofocus (PDAF) modules
 - Some metering modules

... not a problem for most mirrorless cameras

 Adding Quarter Wave Plate can convert the linear polarization to circular

Sourcing A Color LCD Panel

- LCDs are widely available from < \$10
 - Color, grayscale, monochrome (on/off)
 - Pixel matrix, segmented, or custom
 - TFT, PMVA, etc.; view angle choices
 - Interfaces: LVDS, MIPI, SPI, I2C...
 - Usually Backlit Transmissive, Reflective, or Backlit Transflective... + touchscreen?
- We need Transmissive without backlight
 - Remove backlight: we tried & failed
 - Peel off reflector: tends to leave residue

Sourcing An Unbacked Panel

WiMiUS S2 Mini Projector – \$55 with screen!
Panel, power, and controller are usable

LCD Panel Specifications

- 1280x800 panel, 5000:1 contrast ratio?
- 68.7 micron "pixels", really RGB stripe sets

Image Quality Through LCD

- Sony A6500 + 50mm *f*/1.4 Takumar @ *f*/1.4
- Color shift: < 1% difference in RGB
- **Exposure**: $-4\frac{2}{3}$ EV (strong polarizer!)

Image Quality Through LCD

Diffusion: modest loss of contrast
Diffraction grating effects!

Diffraction Is A Big Problem

- Pixel fill factor is about 85%
 - Rows: thick mullions, 68.7µm on center
 - Columns: thin mullions, 22.9µm on center
- Diffraction $\theta = \sin^{-1}((m * \lambda) / d)$ where:
 - *m*: order number λ : wavelength
 - d: line spacing θ : angle
- Angular displacements for m=1: @ 450nm: 1.13°horizontal, 0.38°vertical @ 530nm: 1.33°horizontal, 0.44°vertical @ 600nm: 1.50°horizontal, 0.50°vertical
- Measured ~ 60-90 pixels

Diffraction Is A Big Problem

White point light source

LCD panel tilted relative to sensor pixels

Diffraction Solutions

- Only *m*=1 horizontal shifts are severe
 - Vertical shifts give minor ghosting
 - Horizontal artifacts amplified by RGB?
- Computational repair: ISS-067 ISS-068
- · Change the diffraction grating
 - Larger pixels; Monochrome? Square?
 - Custom segment (pixel) layouts
 - Translucent conductors (as in OLEDs?)
- Grating as part of lens design?

RGB Filtering Through LCD

- All three color filters work, but R is purer than B, which is purer than G
- Mixing colors works as expected, with good control

Is LCD Contrast Really 1:5000?

No filter to all black No filter to all white $-4\frac{2}{3}$ EV All white to all black $-9\frac{1}{3}$ EV

EV 1:16384 - 14 1:25 1:645

So Many Answers...

- Contrast ratio: more than good enough
- Timing & refresh issues: dealt with
- Translucent vs. transparent: minor diffusion
- · Polarization effects on the camera:
 - OK on mirrorless
 - DSLRs need circular polarization
- LCD pixelization effects: horrific diffraction!
- Color LCD RGB subpixels: OK

Conclusions

- Programmable Liquid Crystal Apertures and Filters for Photographic Lenses?
 - Simple LCLV usable for both
 - LCD technology is viable for both
 - LCD pixels act as a diffraction grating;
 fixing LCD likely not economically viable
- Future work
 - Custom LCLV apertures (not laser mod)
 - Use of color LCD as single-pixel modulator

Diffusion Effect (42MP)

