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Memory Terminology
• Volatile – power off, data fades away
• ROM – non-volatile Read Only Memory
• PROM, EPROM, OTP, EEROM, Flash, 3DXPoint –

types of non-volatile programmable memory
• RAM – Random Access Memory (mostly volatile)

• Core – non-volatile magnetic RAM technology
• SRAM – Static RAM, fast but big cells
• DRAM – Dynamic RAM, slow but small cells
• EDO, SDRAM, DDR, RamBus – DRAM types
• CXL – Compute eXpress Link

• Registers, Cache – fast working memories

https://media-www.micron.com/-/media/client/global/documents/products/white-paper/cxl_impact_dram_bit_growth_white_paper.pdf


More Memory Terminology

• Punched cards
• Punched paper tape
• Tape, Magtape
• Drum
• Disks:

Floppy, Hard, Magneto-optical, Compact Disc,
Digital Video (Versatile?) Disc, Blu-ray

• Solid State Disk, Optane





Regs: a few kB, 1 cycle
L1 Cache: 64kB, ~4 cycles
L2 Cache: 2MB, ~12 cycles
L3 Cache: 16MB, ~43 cycles
Main Memory: 32GB, $4/GB,

~248 cycles
SSD: 512GB, $0.10/GB,

~200k cycles,
Magnetic Disk: 14TB,

$0.018/GB, ~20M cycles

The Memory Hierarchy



How The Hierarchy Helps

• Main memory is too slow & too small; we want:
– Capacity & cost of the big stuff (e.g., disk)
– Access speed of the fast stuff (e.g., regs)

• If most things are in the top layers when we
want to access them, this works…
this is what we call good locality of reference

• Two basic types of locality:
– Temporal: same thing accessed again soon
– Spatial: nearby thing accessed soon



Managing The Hierarchy

• Everything “lives” in the bottom layer (e.g., disk)

• Drop copies in higher layers to access faster
– SSD and disk are slow enough that OS

software can manage copying
– Caches need hardware management
– Register copy management is explicitly done

by the compiler via load/store instructions
(GPUs & microcontrollers often also have
local memories managed by the compiler)



Making An Access
• Does this layer have a copy of what I want?

No: a miss needs to request thing from below
Yes: a hit operates on the copy here

• What high hit ratio: hits/(hits+misses) ≈ 1

• How big a block to copy?
– Temporal locality ⇒ 1 word
– Spatial locality ⇒ a bigger chunk holds more

nearby things, but takes longer to copy
– Can transfer bigger blocks from SSD, disk
– Usually 32B/64B, but ≥512B from SSD, disk



What Does Cache Look Like?

• Cache is basically a hardware hash table
– Index is hash(address)
– Offset of B in Data is off(address)
– At least two fields: tag, data

• Suppose 64kB cache with 64B/line with
hash(addr)=addr[15:6]; offs(addr)=addr[5:0];

hash(32’h00000081)=2
offs(32’h00000081)=1
hash(32’h00010040)=1
offs(32’h00010040)=0
hash(32’h00000102)=0
offs(32’h00000102)=2

Line Index Tag Data

0: 32’h00000102

1: 32’h00010040

2: 32’h00000081

… 

1023:



Cache Associativity?

• Set size (ways) is like hash table bucket size
– Direct mapped: each addr maps to 1 line
– Set associative: select 1 of s lines
– Fully associative: set size = # lines in cache

• Ways >1 means there are ways choices for
where to put a line, might improve hit rate

• Ways >1 requires comparing to ways tags
– Read entire set, need ways comparators
– Check tags sequentially, takes ways clocks



Cache Associativity Example

• An example
– 64kB cache size
– 64B line (Data) size; 64kB/64B=1024 lines
– 2-way set associative; 1024/2=512 buckets

• Staying with a very simple hash function:
hash(addr)=addr[14:6]; offs(addr)=addr[5:0];

hash(32’h12300100)=0
offs(32’h12300100)=0
hash(32’h00010040)=1
offs(32’h00010040)=0
hash(32’h00000102)=0
offs(32’h00000102)=2

Line Index Tag Data

0: 32’h12300100

32’h00000102

1: 32’h00010040

… 



Basic cache design issues

• Placement (mapping)
– the hash function

• Identification
– which line within the set do I want?

• Replacement policy
– which line gets kicked-out to make space?

• Write strategy
– how far back do writes go and when?



Which replacement policy?

• Direct mapped  → no choice
• Random
• Replace a clean (not dirty) line
• LRU (Least Recently Used): mark when line

is accessed, replace not accessed recently
• LFU (Least Frequently Used)
• MRU and MFU: Most “”
• Belady’s MIN: replace line not used for the

longest time in the future (how to know this?)
• Compiler-driven; e.g., using cache bypass



Write strategy

• Write through
– Write always goes to main memory
– Easy; needed for I/O devices in memory

• Write back
– Write only when line replaced, saving traffic
– Could do lazy writes when not busy
– May need to read on miss to get rest of line

• Write allocate: write back, but don’t wait for
line to be read first; aka pre-arrival caching



Write Buffer

• Sort-of like a “level 0 data cache”
(faster because no TLB in front of it…
but we haven’t discussed TLBs yet)

• Buffer can re-group writes to form write to a
larger fraction of a line (not just one byte or
word)

• Need to be careful about task switches, etc.;
may have to flush write buffer often



What causes a miss?
• Compulsory

– Never touched this block before
– Shared fetch effect can avoid these when

another process touches what I want first

• Capacity
– Could have been from cache, but didn’t fit

• Conflict
– Could have fit, but cache mapping had a

conflict with another line that caused this
line to be replaced (e.g., direct mapped)



Cache optimizations

• Larger total cache size
– Fewer capacity & conflict misses
– Dumber replacement policy works ok
– Increases hit time, die space, and power use

• Larger line size
– Fewer compulsory misses (spatial locality)
– More capacity & conflict misses
– Increases miss penalty (block transfer time)



More cache optimizations

• Higher associativity
– Reduces conflict misses
– Increases hit time & power use

• More levels of cache
– Smaller, faster, upper-level caches
– More complex hardware structure



Still more cache optimizations

• Priority to read misses over writes
– Reduces miss penalty
– Modest increase in design complexity

• Avoiding address translation before indexing
– Reduces hit time
– Not what operating systems expect
– Frequent cache flushes or need PID tags



Compiler optimizations

• Restructure code to change data access pattern
– Group data (data layout)

(many languages heavily constrain this)
– Reorder accesses (loop transformations)

• Prevent cache pollution
– Why cache what you get from a register?
– Often double-map: cache / bypass

• Avoid saving data that isn’t used again



Compiler optimizations

Merging/splitting arrays

• Array elements accessed together can be
grouped together to enhance spatial locality

• Also separate those not accessed together

E.g., suppose a[i] and c[i] accessed together:

int a[N], b[N], c[N];
struct { int a, b, c; } abc[N];
struct { int a, c; } ac[N]; int b[N];



Compiler optimizations

Loop interchange

• Loop nest traversal order matches data layout

• Improves spatial locality

E.g., if a[0][0] is next to a[0][1]:

for (i=0; i<N; ++i)
  for (j=0; j<M; ++j) a[i][j] = 0;
for (j=0; j<M; ++j)
  for (i=0; i<N; ++i) a[i][j] = 0;



Compiler optimizations

Loop fusion
• Fuse loops that work on similar data
• Improves spatial locality

for (i=0; i<N; ++i)
  for (j=0; j<M; ++j)
    a[i][j] = b[i][j] + c[i][j];
for (i=0; i<N; ++i)
  for (j=0; j<M; ++j)
    d[i][j] = a[i][j] * c[i][j];
for (i=0; i<N; ++i)
  for (j=0; j<M; ++j) {
    a[i][j] = b[i][j] + c[i][j];
    d[i][j] = a[i][j] * c[i][j]; }



Prefetching
• Software (by compiler)

– Hoist load to earlier position in program
– Suggest hardware load into cache

• Hardware
– Assume or recognize reference pattern

and request expected next early
– Line +/-1, strided, other patterns

• Works better for instructions than data

• Generally can abort a prefetch to cache,
prefetches can’t fault (no exceptions)



A Real Processor: AMD Athlon

3 caches: split Instruction/Data L1, unified L2



Consistency Models

• The volatile keyword in C/C++ gives
potential memory order constraints

• Strict: everybody sees result at next tick

• Sequential: everybody sees things as if
they happened in a sequential order

• Weak Ordering: memory barriers/fences
force ordering of before vs. after



Cache Coherence
• How one maintains consistency

• What to do when something writes?
– Invalidate: mark/discard old entries
– Update: use the write data to update

• Who to notify?
– Snooping: everybody watches
– Ownership: only talk to owner
– Directory: permissions, who to notify

• MESI Protocol: Modified (dirty), Exclusive,
Shared (clean), Invalid – 4 line states



• Arranging stuff in memory:
– Code starts at low address (0)
– Static (fixed address) data
– Heap typically grows up
– Stack typically grows down

• Very bad if stack meets heap
– Stack grows to cover SP
– Heap grows by explicit calls to
sbrk(), malloc(), new, etc.

Memory Map of a Process



Memory Map of a Computer

• Originally, loaded one program
at a time
– OS was mostly a “loader”
– User code could do anything

• Still a fairly common model for
embedded computers and various
microcontrollers



• A stray user program could
corrupt the OS… add a fence
register to protect it

• Processor respects fence unless
in privileged mode
– Become priv by system call

or interrupt to trusted address
– Surrender priv when return to

user program

Protection



• Don’t want expensive computer
idle while waiting for printer, etc.
– Load multiple jobs
– Run 1 while 0 is waiting

• Timesharing: alternate running
so all processes make progress

• Want two fence registers...

Batch Scheduling and 
Timesharing



Memory Fragmentation



Memory Page Tables



Logical vs. Physical Addresses

• Memory is divided into pages
– Classically, each page is 4kB
– Most systems also support 4MB pages

• Processor outputs logical (aka virtual) address
– Top bits identify page number, bottom offset
– Page table says where each page number is
– Physical address substitutes page address in

memory for logical page number



Page Table Issues

• 4kB pages are quite small...
– IBM PC had 128KB memory, so 32 entries
– With 4GB memory, need 1M page entries!
– Each  process needs a page table!

• Translation Lookaside Buffer (TLB)
– Essentially a cache for page table entries
– Translation typically before L1 cache…

so the TLB needs to be fast, hence small
– Can make L1/L2 TLBs, separate for I/D;

don’t wait for L1 miss to start search of L2



A Real Processor: AMD Athlon

4 TLBs: L1+L2 for each of code and data



Page Table Issues

• What happens for a TLB miss?
– Instruction gets stopped, then restarted when

the TLB has the appropriate entry…
this requires hardware support

– Must fetch page table entry (from memory)

• Thus, data in cache might not be accessible
because TLB can’t translate the address:

e.g., L1 64kB cache has 1024 64B lines, but
L1+L2 TLB might only have 256 entries!



Page Table Use

• Prevents memory fragmentation

• Allows per-page access protection (e.g., rwx)

• Don’t need to have everything in main memory!
– Pages can not yet exist
– Pages can be shared between processes
– Pages can exist on disk
– Pages can exist in a networked machine

• Pages can be slow to access from elsewhere



Page Table Benefits
• Pages can not yet exist

– Stack, heap, and space between

• Pages can be shared between processes
– DLLs: Dynamic Link Libraries
– Inter-process communication

• Pages can exist on disk
– Bigger than main memory
– Fault in stuff as needed, mapped file I/O

• Pages can exist in a networked machine
– DSM: Distributed Shared Memory





What we want, what we have

• What we want:
• Unlimited memory space
• Fast, constant, access time

(UMA: Uniform Memory Access)
• What we have:

• Memories are getting bigger
• Growing complexity memory hierarchy
• Temporal and spatial locality issues

(NUMA: Non-Uniform Memory Access)



Verilog Implementations?
• A cache or TLB is a memory with the usual

address decode logic, but:
– Address used is hash(memory_address)
– Each memory cell contains a set with...

Cache: (tag, data, dirty, valid, …)/line
TLB: (tag, physical_address, status)

– Tag match and replacement algorithm
– Partial read/write of data field

• State machine sequences operations

• Can be pipelined (even out of order)
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