Memories

CPE380, Spring 2024

Hank Dietz

http://aggregate.org/hankd/

q:gz University of
Kentucky

http://aggregate.org/hankd

Memory Terminology

Volatile — power off, data fades away

ROM - non-volatile Read Only Memory

PROM, EPROM, OTP, EEROM, Flash, 3DXPoint -
types of non-volatile programmable memory
RAM - Random Access Memory (mostly volatile)
* Core - non-volatile magnetic RAM technology
* SRAM - Static RAM, fast but big cells

* DRAM - Dynamic RAM, slow but small cells

* EDO, SDRAM, DDR, RamBus - DRAM types
* CXL - Compute eXpress Link

Registers, Cache - fast working memories

https://media-www.micron.com/-/media/client/global/documents/products/white-paper/cxl_impact_dram_bit_growth_white_paper.pdf

More Memory Terminology

Punched cards
Punched paper tape
Tape, Magtape
Drum

Disks:

Floppy, Hard, Magneto-optical, Compact Disc,
Digital Video (Versatile?) Disc, Blu-ray

Solid State Disk, Optane

Decode Buffer Data Registers } Write Buffer

Data L1 TLB

Inst. L1 TLB Inst. L1 Cache Data L1 Cache

8-32KB, 2-3 cycles 8-32KB, 2-3 cycles
Inst. L2 TLB | Data L2 TLB

Shared Inst./Data L2 Cache

Multi—Core Shared L3 Cache

Main Memory (DRAM): 2-64GB, ~1K cycles/reference

v ¢

SSD, Disk, or Disk with SSD cache: 32GB-5TB, ~10K—-10M cycles/reference

v ¢

The Memory Hierarchy

Regs: a few kB, 1 cycle

L1 Cache: 64kB, ~4 cycles
L2 Cache: 2MB, ~12 cycles
L3 Cache: 16 MB, ~43 cycles
Main Memory: 32GB, $4/GB,

, but Fast!

L1 Cache
Commonly built-into
processor chip;

can't easily upgrade

L2 Cache
L3 Cache

~248 CYCIes 5?} / Main Memory Non-volafl
SSD: 512GB, $0.10/GB, °°

storage
~200k cycles, >/ /) \‘e'g"ﬁ'esy“e”‘)

Magnetic Disk: 14TB, C / — \ Lots, but
$0.018/GB, ~20M cycles -’

How The Hierarchy Helps

Main memory is too slow & too small; we want:
— Capacity & cost of the big stuff (e.g., disk)
— Access speed of the fast stuff (e.g., regs)

If most things are in the top layers when we
want to access them, this works...
this is what we call good locality of reference

Two basic types of locality:
- Temporal: same thing accessed again soon
— Spatial: nearby thing accessed soon

Managing The Hierarchy

* Everything “lives” in the bottom layer (e.g., disk)

* Drop copies in higher layers to access faster

- SSD and disk are slow enough that OS
software can manage copying

— Caches need hardware management

- Register copy management is explicitly done
by the compiler via load/store instructions
(GPUs & microcontrollers often also have
local memories managed by the compiler)

Making An Access

* Does this layer have a copy of what | want?
No: a miss needs to request thing from below
Yes: a hit operates on the copy here

* What high hit ratio: hits/(hits+misses) = 1

* How big a block to copy?
- Temporal locality = 1 word
— Spatial locality = a bigger chunk holds more
nearby things, but takes longer to copy
— Can transfer bigger blocks from SSD, disk
— Usually 32B/64B, but =512B from SSD, disk

What Does Cache Look Like?

Cache is basically a hardware hash table
— Index is hash (address)

— Offset of B in Data is of £ (address)
— At least two fields: tag, data

Suppose 64kB cache with 64B/line with

hash (addr)=addr[15:6]; offs(addr)=addr[5:0];

Line Index Tag
hash (32'h00000081) =2 : 32’h00000102
offs (32’ h00000081) =1 : T

hash (32’ h00010040) =1 |
offs (32’ h00010040)=0 : 32'h00000081
hash (32’ h00000102) =0 .

offs (32’ h00000102) =2

Cache Associativity?

* Setsize (ways) is like hash table bucket size
— Direct mapped: each addr maps to 1 line
— Set associative: select 1 of s lines
— Fully associative: set size = # lines in cache

* Ways >1 means there are ways choices for
where to put a line, might improve hit rate

* Ways >1 requires comparing to ways tags
- Read entire set, need ways comparators
- Check tags sequentially, takes ways clocks

Cache Associativity Example

An example
- 64kB cache size

— 64B line (Data) size; 64kB/64B=1024 lines
— 2-way set associative; 1024/2=512 buckets

Staying with a very simple hash function:
hash (addr)=addr[14:6]; offs(addr)=addr[5:0];

Line Index Tag
hash (32’h12300100)=0 0: 32'h12300100
offs (32’ h12300100) =0 .

hash (32’ h00010040) =1 |
offs (32’ h00010040)=0 L 32'h00010040
hash (32’ h00000102) =0
offs (32’ h00000102) =2

Basic cache design issues

Placement (mapping)
— the hash function

|dentification
— which line within the set do | want?

Replacement policy
— which line gets kicked-out to make space?

Write strategy
— how far back do writes go and when?

Which replacement policy?

Direct mapped -

Random

Replace a clean (not dirty) line

LRU (Least Recently Used): mark when line
is accessed, replace not accessed recently
LFU (Least Frequently Used)

MRU and MFU: Most ™

Belady’s MIN: replace line not used for the
longest time in the future (how to know this?)
Compiler-driven; e.g., using cache bypass

Write strategy

* Write through

— Easy; needed for I/O devices in memory

 Write back

— Write only when line replaced, saving traffic
— Could do lazy writes when not busy

* Write allocate: write back, but don’t wait for
line to be read first; aka pre-arrival caching

Write Buffer

 Sort-of like a “level 0 data cache”
(faster because no TLB in front of it...
but we haven’t discussed TLBs yet)

* Buffer can re-group writes to form write to a
larger fraction of a line (not just one byte or
word)

* Need to be careful about task switches, etc.;

What causes a miss”?

* Compulsory
— Never touched this block before
— Shared fetch effect can avoid these when
another process touches what | want first

* (Capacity
— Could have been from cache, but didn’t fit

* Conflict
— Could have fit, but cache mapping had a
conflict with another line that caused this
line to be replaced (e.g., direct mapped)

Cache optimizations

* Larger total cache size
— Fewer capacity & conflict misses
— Dumber replacement policy works ok
— Increases hit time, die space, and power use

* Larger line size
— Fewer compulsory misses (spatial locality)
— More capacity & conflict misses
— Increases miss penalty (block transfer time)

More cache optimizations

* Higher associativity
— Reduces conflict misses
— Increases hit time & power use

* More levels of cache
— Smaller, faster, upper-level caches
— More complex hardware structure

Still more cache optimizations

* Periority to read misses over writes
— Reduces miss penalty
- Modest increase in design complexity

* Avoiding address translation before indexing
- Reduces hit time
— Not what operating systems expect
— Frequent cache flushes or need PID tags

Compiler optimizations

* Restructure code to change data access pattern
— Group data (data layout)
(many languages heavily constrain this)
— Reorder accesses (loop transformations)

* Prevent cache pollution
— Why cache what you get from a register?
— Often double-map: cache / bypass

* Avoid saving data that isn’t used again

Compiler optimizations

Merging/splitting arrays

* Array elements accessed together can be
grouped together to enhance spatial locality

* Also separate those not accessed together

E.g., suppose al[1] and c[1] accessed together:

struct { 1int a, c; } ac[N]; int b[N];

Compiler optimizations

Loop interchange

* Loop nest traversal order matches data layout

* |Improves spatial locality
E.g.,,ifal[0][0] isnexttoa[O][1]:

for (1=0; 1<N; ++1)
for (j=0; j<M; ++j) al[ill[j] = O;

Compiler optimizations

Loop fusion

* Fuse loops that work on similar data
* |Improves spatial locality

for (1=0; 1<N; ++1)
for (j=0; j<M; ++j)
ali][j] = bl[1][]]

for (1=0; 1<N; ++1)
for (j=0; j<M; ++j)
dii][j] = al1][]]

for (1=0; 1i<N; ++1)
for (j=0; j<M; ++j)
ali1][j] = bl[1][]]
dli][j] = al1ll[]]

% +

c[i1][1];

cl1][3];

clil[j];
clilljl;

}

Prefetching

Software (by compiler)
— Hoist load to earlier position in program
- Suggest hardware load into cache

Hardware

— Assume or recognize reference pattern
and request expected next early

— Line +/-1, strided, other patterns

Works better for instructions than data

Generally can abort a prefetch to cache,
prefetches can’t fault (no exceptions)

A Real Processor: AMD Athlon

AMD Athlon™ Processor Architectural Block Diagram

Branch Prediction Table

2-way, BAKB Instruction Cache Pradecoda =

sd-antry L1 TLEREE-sntry L2 TLE Cache

FWay x86 Instruction De

coders

MK MM
30N ow! SO ool

Load | Store Queus Unit

2-way, B4KB Data Cache
3z-sntry L1 TLB/286-entry L2 TLB
System Interface L2 SRAMs |

3 caches: split Instruction/Data L1, unified L2

Consistency Models

The volatile keyword in C/C++ gives
potential memory order constraints

Strict: everybody sees result at next tick

Sequential: everybody sees things as if
they happened in a sequential order

Weak Ordering: memory barriers/fences
force ordering of before vs. after

Cache Coherence

How one maintains consistency

What to do when something writes?
— Invalidate: mark/discard old entries
— Update: use the write data to update

Who to notify?

- Snooping: everybody watches

— Ownership: only talk to owner

— Directory: permissions, who to notify

MESI Protocol: Modified (dirty), Exclusive,
Shared (clean), Invalid — 4 line states

Memory Map of a Process

Arranging stuff in memory: —_—
— Code starts at low address (0) [— —==
— Static (fixed address) data
— Heap typically grows up

— Stack typically grows down

Very bad if stack meets heap Heap (sbrk)
— Stack grows to cover SP S
- Heap grows by explicit calls to (.data)

sbrk (), malloc (), new, elC. (Code)
dext

Memory Map of a Computer

* Originally, loaded one program
at a time
— OS was mostly a “loader”
— User code could do anything

* Sitill a fairly common model for
embedded computers and various
microcontrollers

Operating
System

Protection

* A stray user program could
corrupt the OS... add a fence
register to protect it

* Processor respects fence unless
in privileged mode
— Become priv by system call
or interrupt to trusted address
— Surrender priv when return to

user program Operating
System

Batch Scheduling and

Timesharing

Don’t want expensive computer
idle while waiting for printer, etc.
- Load multiple jobs

— Run 1 while 0 is waiting

Timesharing: alternate running
so all processes make progress

Want two fence registers...

Operating
System

Memory Fragmentation

Memory Page Tables

Logical vs. Physical Addresses

* Memory is divided into pages
— Classically, each page is 4kB
— Most systems also support 4MB pages

* Processor outputs logical (aka virtual) address
— Top bits identify page number, bottom offset
- Page table says where each page number is
- Physical address substitutes page address in
memory for logical page number

Page Table Issues

* 4kB pages are quite small...
— IBM PC had 128KB memory, so 32 entries
- With 4GB memory, need 1M page entries!
— Each process needs a page table!

 Translation Lookaside Buffer (TLB)
— Essentially a cache for page table entries
— Translation typically before L1 cache...
so the TLB needs to be fast, hence small
— Can make L1/L2 TLBs, separate for I/D;
don’t wait for L1 miss to start search of L2

A Real Processor: AMD Athlon

AMD Athlon™ Processor Architectural Block Diagram

Branch Prediction Table

2-way, BAKB Instruction Cache Pradecoda =

sd-antry L1 TLEREE-sntry L2 TLE Cache

FWay x86 Instruction De

coders

MK MM
30N ow! SO ool

Load | Store Queus Unit

2-way, B4KB Data Cache
3z-sntry L1 TLB/286-entry L2 TLB
System Interface L2 SRAMs |

4 TLBs: L1+L2 for each of code and data

Page Table Issues

* What happens for a TLB miss?

— Instruction gets stopped, then restarted when
the TLB has the appropriate entry...
this requires hardware support

— Must fetch page table entry (from memory)

* Thus, data in cache might not be accessible
because TLB can’t translate the address:

e.g., L1 64kB cache has 1024 64B lines, but
L1+L2 TLB might only have 256 entries!

Page Table Use

Prevents memory fragmentation
Allows per-page access protection (e.g., rwx)

Don’t need to have everything in main memory!
— Pages can not yet exist

— Pages can be shared between processes

— Pages can exist on disk

- Pages can exist in a networked machine

Pages can be slow to access from elsewhere

Page Table Benefits

Pages can not yet exist
— Stack, heap, and space between

Pages can be shared between processes
— DLLs: Dynamic Link Libraries
— Inter-process communication

Pages can exist on disk
- Bigger than main memory
— Fault in stuff as needed, mapped file 1/0

Pages can exist in a networked machine
— DSM: Distributed Shared Memory

Decode Buffer Data Registers } Write Buffer

Data L1 TLB

Inst. L1 TLB Inst. L1 Cache Data L1 Cache

8-32KB, 2-3 cycles 8-32KB, 2-3 cycles
Inst. L2 TLB | Data L2 TLB

Shared Inst./Data L2 Cache

Multi—Core Shared L3 Cache

Main Memory (DRAM): 2-64GB, ~1K cycles/reference

v ¢

SSD, Disk, or Disk with SSD cache: 32GB-5TB, ~10K—-10M cycles/reference

v ¢

What we want, what we have

* What we want:
* Unlimited memory space
* Fast, constant, access time
(UMA: Uniform Memory Access)
* What we have:
* Memories are getting bigger
. memory hierarchy
* Temporal and spatial locality issues
(NUMA: Non-Uniform Memory Access)

Verilog Implementations?

* A cache or TLB is a memory with the usual

address decode logic, but:

— Address used is hash(memory_address)

— Each memory cell contains a set with...
Cache: (tag, data, dirty, valid, ...)/line
TLB: (tag, physical_address, status)

- Tag match and replacement algorithm

— Partial read/write of data field

» State machine sequences operations

* Can be pipelined (even out of order)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

