
Proceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction,
SIGPLAN Notices Vol. I9, No. 6, June 198~

Paral le l Process ing:
A S m a r t Compi l er and a D u m b Machine

Joseph A. Fisher, John R. Ellis,
John C. Ruttenberg, and Alexandru Nicolau

Department of Computer Selenee, Yale University
New Haven, CT 06520

Abstrac t
Multiprocessors and vector machines, the only success-

ful parallel architectures, have coarse-grained parallelism
that is hard for compilers to take advantage of. We've
developed a new fine-grained parallel architecture and a
compiler that together offer order-of-magnitude speedups
for ordinary scientific code.

I n t r o d u c t i o n
Compilers have traditionally played second fiddle to

hardware projects in parallel processing. Parallel ar-
chitectures have been built to be hand coded, and at-
tempts at compiler writing were mere afterthoughts.
These attempts have been unsurprisingly unsuccessful.

The two most common types of parallel architectures
built to date have been vector machines and multiproces-
sots. Compiling (or simply hand coding) for either re-
quires matching an overview of the coarse structure of the
application to that of the hardware. It's conceivable that
hand coders and compilers might someday be good at
this; but so far they haven't been, and there's no reason
for optimism. There has been a genera.] failure at culling
large amounts of parallelism from ordinary applications.

So instead of building an architecture first and a com-
piler second, we have simultaneously developed a compiler
and an architecture intended for scientific computing.
Using a technique called trace scheduling, the Bulldog
compiler finds large amounts of parallelism in ordinary
scientific code. Taking advantage of this parallelism re-
qlfires a new architecture~ which we call VLIW (Very
Long Instruction Word).

The Bulldog compiler is finished, and it compiles or-
dinary scientific programs into highly parallel machine
code for a large class of VLIWs, achieving order-of-
magnitude speedups over traditional architectures. We
think VLIW architectures are practical in the very near

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1984 ACM 0-.89791-139-3/84/0600/0037500.75

future, and we're building a VLIW machine, the ELI
(Enormously Long Instructions) to prove it.

In this paper we'll describe some of the compilation
techniques used by the Bulldog compiler. The ELI
project and the details of Bulldog are described
elsewhere [4, 6, 7, 15, 17].

V L I W Archi tectures
Highly parallel machines that actually have been built

fall into two broad classes: multiprocessors and vector
machines. Both classes provide coarse-grained parallelism
which is hard for a compiler to use.

With multiprocessors, a compiler must minimize com-
munication and synchronization while trying to keep all
the processors busy, avoiding the delays when one proces-
sor must wait for another. This forces a compiler to look
for large sections of relatively independent control and
data; compilers have only been able to do this for
programs consisting of simple data-independent inner
loops.

With vector machines, a compiler must find large ag-
gregates in the program that can he fetched and operated
upon simultaneously using relatively simple operators.
This requires finding a high degree of regularity in the
data and control, and compilers haven't been able to do
that either for very many programs.

Instead of coarse-grained parallelism inaccessible to a
compiler, VLIWs provide fine-grained parallelism that a
trace-scheduling compiler can easily use. In a VLIW
machine, every resource is completely and independently
controlled, by which we mean:

Timing control. Every single action takes an
amount of time predictable by the compiler.
The time may vary according to the operation.

Flow control. There is a single thread of control,
a single instruction stream, that initiates each
fine-grained operation; many such operations can
be initiated each cycle.

Communications control. All communications
are completely choreographed by the compiler
and are under explicit control of the compiled
program. The source, destination, resources, and
time of a data transfer are all known to the com-
piler. There is no sense of packets containing

37

destination addresses or of hardware scheduling
of transfers.

Such fine-grained control of a highly parallel machine
requires very large instructions, hence the name Very
Long Instruction Word architecture.

Figure 1 shows a picture of a hypothetical VLIW
machine. It has 16 c lus te r s connected by simple data
buses. Each cluster is a reduced instruction set processor
that has local registers, instruction memory, optional data
memory, a few functional units implementing integer
and/or floating scalar operations, and a partial crossbar
connecting these elements within the cluster.

Figure 1: A hypothetical VLIW; each box is a separate cluster

All the clusters run in lockstep and are controlled by a
single instruction stream. An instruction specifies the ac-
tion of every element of every cluster independently; for
example, one instruction may initiate a floating add in
cluster 1, a floating subtract in cluster 2, an integer mul-
tiply in cluster 3, a register transfer between clusters 1
and 4, etc. Consequently, instructions will be very large
(at least several hundred bits).

VLIW machines are far too large to have a single
crossbar connecting all their elements. Instead, the
clusters are connected by buses for transferring scalar
values. It may well take several hops to move a value be-
tween distant clusters.

VLIWs need not have the regularity implied by the pic-
ture. The interconnections between the clusters, the type
and number of elements within the clusters, and the con-
nections between cluster elements can (and probably will)
be asymmetric.

Before the advent of trace scheduling, it wasn't prac-
tical to build VLIW machines because no mere mortal
could program them by hand. It is just barely possible to
program horizontally microcoded machines and wide
processors such as the FPS-164 and the MARS-432, but
the amount of effort involved is tremendous. Program-
ming a VLIW with 16 or more times the number of func-
tional units is out of the question. Without a compiler for
a high-level language, VLIWs would be useless.

C o m p i l e r s f o r V L I W s
At first blush compiling high level languages for VLIWs

might appear to be an impossible task, given that they
are programmed at such a low, detailed level. But in fact
the Bulldog compiler isn't that much different from a
traditional optimizing compiler.

A traditional compiler parses the source program into
an intermediate code, optimizes that intermediate code,
and then translates the intermediate code into machine
code. Usually, the translation to machine code is done
one b~sic block at a time, perhaps after registers have
been globally allocated.

It wouldn't be hard to construct a basic-block code gen-
erator for VLIWs. Several such code generators were
written for machines with limited fine-grain parallelism
such as the the FPS-164, the CDC machines, and the
scalar portion of the Cray [18]. Par t of the problem is
equivalent to that of statically scheduling a set of inter-
dependent jobs with different resource requirements on a
fixed set of processors; this problem has been studied for
years and there are many practical solutions [5].

But basic blocks have severely limited parallelism; ex-
periments showed early on that one could expect at most
a two- or three-times speedup by executing basic blocks in
parallel [9, 19]. A basic block-based code generator
couldn't hope to keep a VL1W with 16 or 32 processors
busy. So no one ever built a VLIW.

Later experiments [14] showed, however, that if one ig-
nored the artificial constraints imposed by basic blocks,
ordinary scientific programs contained large amounts of
parallelism--factors of 90 on average. If only a compiler
could find it, such parallelism is more than enough to
keep a VLIW busy.

Trace S c h e d u l i n g
Trace scheduling finds much of that factor-of-90 paral-

lelism by giving more than one basic block at a time to
the code generator. To generate machine code, the com-
piler repeatedly traces out a path of many basic blocks in
the intermediate-code flow graph and hands that entire
path to the code generator. These paths, or t races , con-
tain much more parallelism than basic blocks. The code
generator treats the trace of blocks almost as if it were a
single, very large basic block.

The compiler picks a trace, generates code for it, picks
another trace, generates code for it, and so on until the
entire flow graph has been translated to machine code.
Estimates of execution frequency guide the compiler in
picking traces; the blocks most likely to be executed com-
prise the first trace, those next likely to be executed com-
prise the second trace, and so on. Figure 2 shows a
simple program and the traces selected from it.

The current compiler uses loop nesting and
programmer-supplied hints to make reasonable guesses
about block execution frequency; this method appears to
work fairly well without too much help from the program-
mer. One could easily imagine an automatic profiler that
would supply execution counts based on sample runs of
the program, though it's doubtful that it would do much
better than tile current method of guessing.

For various reasons, a trace never extends pa-~t a loop
boundary. That is, a trace can include only blocks from

38

~ 6

Figure 2: A flow graph with the traces selected from it

the same loop, but no blocks from containing or contained
loops.

To further increase the parallelism of traces, the com-
piler unrolls the bodies of inner loops as many as 32 times
immediately after parsing the source program into inter-
mediate code. For example, a loop such as:

i :=I
LOOP {

IF i > n THEN EXIT
body
i :=i+l
}

unrolled three times would look like:

i :=I
LOOP {

IF i > n THEN EXIT

body
i :=i+l

IF i > n THEN EXIT

body
i :=i+l

IF i > n THEN EXIT

body
i :-i÷l
)

This unrolling produces much longer traces, increasing
the potential parallelism available to the code generator.
(Later we'll see other uses for unrolling.)

To get parallel code the code generator must substan-
tially reorder the trace's intermediate-code operations, fill-
ing machine instructions with operations that come from
widely separated places in the program; time-critical
operations are usually scheduled early, while non-critical
operations are often delayed. In a basic-block code gener-
ator of a traditional compiler, this reordering is relatively
easy [1, 18].

By doing one basic block at a time, a traditional code
generator is assured that all jumps into the block from
the outside are to the block's first instruction, and that
there is at most one conditional jump in the block, which
must be at the end. But looking at figure 2, one im-
mediately notices that traces consisting of many blocks
will have more than one conditional jump and that there
will be jumps from outside the trace into the middle of
the trace. This complicates the task of reordering con-
siderably; in addition to the normal data-precedence rules
for basic block operations, the compiler must also worry
about jumps off the trace and jumps into the trace.

Let's first consider reordering in the presence of con-
ditional jumps. Suppose that we have the following frag-
ment of a flow graph:

I !
I

I'-. IF 10 i' : - , . 3]
I I

13. d Is. g . - -d-" i I : f f i a - 3 [
I

I I
and that the current trace consists of operations 1, 2, and
3. Suppose that the code generator decides that operation
1 is not time-critical and should be moved below the con-
ditional jump 2. If it moves 1 below the jump, then
operation 4, which reads the variable a written by 1, will
get the wrong value of a. So if 1 is moved below 2, the
compiler will have to make a copy of 1, 1', on the off-
trace edge of the jump:

i

I

I I

J I
Conversely, suppose that the code generator decides

that 3 is time-critical and would like to move it before the
jump. Because 3 writes the variable d, and 5 reads the
previous value of d, moving 3 above the jump would be

39

incorrect, since 5 would then Set the wrong value of d. If
the value of d were not used on the off-trace edge of the
jump, then moving 3 above the jump would be permis-
sible.

What about jumps from blocks outside the trace into
the middle of the trace? For example, assume that in the
following fragment the current trace consists of operations
1, 2, and 3:

I
I1. a : - b . cl

I
x . - x . 11

k ~

[3. d := a - 3[

I

I
14. a':e*f

Suppose 3 was time critical and the code generator
wanted to move it before 2, above the spot where 4 jumps
to the trace. By itself, this motion is incorrect, because 4
writes variable a and 3 reads it; 3 would no longer get the
correct value of a from 4. The solution is to make a copy
of 3, 3', on the incoming edge right below 4; in this way,
no matter which path is executed, d will still get the same
value.

I I

I I
[3. d := a - 3[[3: d := a - 3J

i f
The general rules for code motions relative to jumps

and rejoins within a trace are:

If a trace operation moves below a conditional
jump, a copy of it must be placed on the off-
trace edge of the jump.

A trace operation that writes a variable can't
move above a conditional jump if the variable is
live on the off-trace edge of the jump.

If a trace operation moves above a rejoin to the
trace, then a copy of it must be placed on the
off-trace rejoining edge.

In these examples we've only considered simple opera-
tions moving past jumps and rejoins to the trace, but con-
ditional jumps as well may move past other jumps and
rejoins. The same rules apply, though there are some
minor complications in copying conditional jumps.

After generating machine code for a trace, the copies of
intermediate code operations resulting from the code mo-
tions are inserted into the flow graph. They will be

selected and compiled as part of later traces. One might
think that excessive code motion would cause an explosion
in copied operations, resulting in a very large object
program, or perhaps that trace scheduling doesn't even
terminate. In fact, it does terminate [15], and experi-
ments show that the amount of copying is quite
acceptable [4].

M e m o r y R e f e r e n c e D i s a m b i g u a t i o n
Indirect memory references arising from pointer

dereferencing and array indexing pose special problems
for a trace-scheduling compiler. Long traces contain
many such indirect references, and in order to take ad-
vantage of the potential parallelism in the trace, the code
generator must be able to reorder the references as it does
other operations in the trace. To see why, consider this
fragment of a trace:

1. v i i] := e l
2. x := v[i]
3. v[j] := e2
4, y := v[j]

Without knowing anything about the indices i and j , a
compiler must assume that i could equal j , and thus that
operation 3 must be executed after both 1 and 2; under
this assumption, there is no available parallelism in the
fragment. But if the compiler knew somehow that I and J
were never equal, then 1 and 3 could be performed in
parallel and 2 and 4 in parallel, a doubling in speed.
Analogous situations arise from dereferencing pointers.

To achieve the most parallelism, the compiler must dis-
ambiguate as many memory references as possible, deter-
mining whether they could possibly be to the same
memory location. Disambiguating pointer dereferences is
tough; there are few obvious clues in the program to help
the compiler determine whether two pointers might point
at the same object. But in our target domain of scientific
code, the inner loops consist almost entirely of array
references, and it usually isn't hard to disambiguate such
references.

The disambiguator is a separate module of the Bulldog
compiler. The code generator asks the disambiguator
questions of the form, "Can these two vector references
possibly refer to the same memory location?" The dis-
ambiguator answers yes, no, or I-don't-know. The I-
don't-know answers are the ones that restrict parallelism.

How does the disambiguator disambiguate two vector
references v [i] and v [j] ? Using the conventional flow
analysis of reaching definitions, the disambiguator derives
symbolic expressions e i and ej for the indices i and j in
terms of the induction variables and loop invariants of the
loops enclosing the two references. It then compares the
two expressions symbolically to see if they could possibly
be equaL; that is, it sees if there are any integer-valued
solutions to the equation e.-e.=0.

i 1
For example, suppose that for the following code the

code generator asked about the two vector references
V [j] a n d v [k] :

4 0

m := e l
FOR i := I to n DO {

j :=i+m
v [j] := e2
k : = j + 1
x := v [k]
}

The disambiguator derives the expressions i+m for in-
dex j and i+m+l for index k. The two indices are equal
if and only if (i+m)-(i+m+l)=O. The disambiguator
simplifies that to -1=0 and concludes that j could not
possibly equal k; therefore, v [j] and v [k] refer to dif-
ferent memory locations.

Often the equation doesn't simplify so neatly; for ex-
ample, what about 4 I + 2 J + I = 0 ? Finding solutions to
integer-valued equations is a well known problem in num-
ber theory, and for linear equations the question is easy to
answer; luckily almost all derivations of vector indices in
scientific code are linear. (There are no integer solutions
to ,1l+2.|+1--0.)

lhlt what about the copying of operations resulting
from code motions during trace scheduling? The program
is continually changing due to these copies being inserted
in the flow graph, and it might seem that the flow
analysis information must be incrementally reeomputed
after each trace. Fortunately this is not the ease, and a
static reaching analysis is sufficient [15]; intuitively, this is
because the trace-scheduling algorithm, preserves, in a
loose sense, the reaching definitions of copies.

Our experience so far has been that this simple method
of disambiguation completely disambiguates most memory
references in most scientific programs. But this isn't good
enough---if only two references in an inner loop were not
disambiguated, actual parallelism could decrease by half
or even more. Unfortunately, we've found that to make
the disambiguator more sophisticated would not only be
difficult to implement, but it would also make compilation
unacceptably more expensive. And we had several ex-
ample loops, including the inner loop of Fast Fourier
Transform, that could be easily disambiguated by hand,
but for which we had no practical automatic techniques.
So no matter what level of disambiguator functionality we
settled on, it still wouldn't be able to handle all the time-
critical inner loops of scientific programs.

Some way was needed for the programmer to tell the
compiler that two memory references are indeed to dif-
ferent locations. We've implemented an assertion facility
by which the programmer can tell the compiler key facts
about the program; if the compiler can't automatically
distinguish two memory references, it consults the
programmer-supplied assertions.

For example, suppose that the compiler can't dis-
ambiguate the references in this code fragment:

x : = v[i]
v [j ÷ k + i] := y

The programmer can add an assertion:

ASSEKT j+k > 0
x := v[i]

v[j+k+i] : = y

that the compiler uses to deduce that the two vector
references are to different locations.

How does the programmer know where assertions are
needed? The compiler tells him. Whenever it encounters
two references it can't distinguish, it prints out infor-
mation identifying them and the simplified symbolic ex-
pression representing the difference of the vector indices.
For the above example, it would print out the question:

j + k = 07

So far, it has always been immediately clear to the
programmer what assertions are needed to completely dis-
ambiguate the program. Typically, only one or two asser-
tions are required for any one program; the compiler per-
forms all the drudge work of applying the assertions to
disambiguate individual memory references.

T h e G l o b a l M e m o r y B o t t l e n e c k
Many designs of parallel architectures fail because of

lack of memory bandwidth. They have small, fast, local
memories clustered around the computing elements, with
large aggregate data stored in a larger, slower, shared
global memory. For programs that manipulate large ag-
gregates, especially for scientific programs, the global
memory Is a severe bottleneck; it can't fetch and store
elements of the aggregate data fast enough to keep the
computing elements busy. Put another way, it is easy to
build a dual-ported memory, but very hard (and
expensive) to build an 8- or 16-ported memory.

Most fast machines use a cache combined with inter-
leaved memory banks to provide higher bandwidth. For
example, by putting even addresses into one bank and
odd addresses into another, the bandwidth doubles, since
the two banks operate in parallel. But this design doesn't
scale up easily, because there is still a single central con-
troller that accepts memory requests and distributes them
to the individual banks. Servicing two requests at a time
is easy; servicing 8 or 16 at a time becomes a nightmare.

We solved the memory bottleneck problem as we solved
other problems, using a combination of new architecture
and smart software. We noticed that in scientific
programs most of the memory references result from small
inner loops enumerating through the elements of large ar-
rays. Further, the central memory controller isn't really
needed for those accesses, since the particular bank of
each access could be predicted at compile time. If com-
puting elements could access individual banks without
going through the central controller, the memory bot-
tleneck would be alleviated.

Unfortunately, even in scientific code it is not always
possible to compute the banks of memory references at
compile time. Even if the architecture supports direct
reference to banks, it must still support general references
for which the bank is not known statically.

In the ELI architecture, each memory bank has a
f r o n t d o o r and a b a c k d o o r . The frontdoor provides
direct access for memory references known at compile
time to be in the bank. The backdoors of all the banks
are connected to a more traditional central memory con-
troller: a memory reference whose bank is unknown at
compile time must be made through the controller. If the
compiler can statically determine the bank of a memory
reference, it will generate code to reference the bank
directly through the frontdoor; otherwise, it will generate
a slower backdoor reference.

41

To determine the bank of a memory reference, the
lhdldog compiler uses techniques very similar to memory
disambiguation. Flow analysis is used to derive a sym-
bolic expression for the index of a memory reference; the
modulo of that index relative to the number of banks
yields the b'mk. If the compiler can't uniquely determine
the bank, the programmer can help by adding assertions.

The compiler ~dso has to apply some source transfor-
mations. For ex~mple, consider the following implemen-
tation of vector addition:

FOR i := 1 TO n DO

a [i] := b [±] + c [i]

Suppose we know that our machine has 8-way interleav-
ing of memory. By unrolling the body of the loop 8
times:

FOR i := 1 TO n BY 8 DO

a [i + 0] := b[i+O] ÷ c[i+O]
a l l + l] := b [i + l] + c [i + l]
a[i+2] := b[1+2] + c[i+2]

all+3] := b[1+3] + c[i+3]
all+4] := b[i+4] + c[i+4]
a[i+5] := b[i+5] + c[i+5]
a [i + 6] := b[i+6] + c [i + 6]
a[i+7] := b[i+7] + c[i+7]

it, isn't, hard to determine at compile time the bank of
each memory access within the loop, given the starting
address of the vectors. In general, the compiler needs to
unroll such loops some multiple of the number of banks.

More sophisticated compiler techniques are used when
loops aren't as well behaved. For example, if the starting
index of a loop is not a constant but a variable, a memory
reference in the loop body could easily be in different
banks for different executions of the loop. But by adding
a special pre-loop, the compiler can guarantee that all the
references in the loop body are to known banks. The pre-
loop executes a copy of the loop body until the index
reaches a known value modulo the number of banks, at
which point control transfers to the main loop.

For example, given the following loop:

FOR i := m t o n DO

a[i] := b[i] + c[i]

the compiler (assuming 8 banks) would transform that
into:

FOR i := m t o n DO
IF 0 = i MOD 8 THEN

temp := i
BREAK

a [i] := b [i] + c [i]
FOR i := temp to n DO

ASSERT 0 = i MOD

a[i+O] := b[i+O]
a[i+l] := b[i+l]

a[i+2] := b[i+2]
a [i + 3] := b[i+3]
a[i+4] := b[i+4]
a [i + 5] := b[1+5]
a[1+6] := b[i+6]
a [i + 7] := b [i ÷ 7]

8
+ c [i+O]
+ c [i + l]

+ c [i + 2]

+ c [i+3]
+ c [1+4]

+ c [i+5]
+ c [i ÷ 6]
÷ c [i + 7]

(] o d e G e n e r a t i o n
Generating machine code from intermediate basic

blocks for a traditional architecture is well
understood--compilers do it every day. The two main
problems are register allocation and instruction selection.
A compiler must decide whether to keep particular values
in memory or in registers. It must also map intermediate
operations onto one or more machine instructions, which
may be difficult if the machine has a rich instruction set.

The problems faced by a VLIW compiler generating
code for a large trace are somewhat different and more
complex.

Foremost, a VLIW compiler must worry about packing
many machine operations into a single, large, parallel
machine instruction. A traditional code generator merely
outputs a stream of machine instructions, one or more per
intermediate operation, that are appended together to
form the object code. But a VLIW code generator must
juggle the machine operations to get as many as possible
to fit into each parallel machine instruction.

Because VLIWs are essentially reduced-instruction-set
processors, there is no problem in selecting machine
operators for intermediate code operations, since the in-
termediate code operations closely correspond to the
machine level. But unlike a traditional machine, a VL1W
offers many hardware functional units implementing the
same operator, and the compiler must choose which one
to use for a particular intermediate operation. Because of
the long data paths between distant elements, the code
generator must try to cluster operations to minimize data
movement between elements. This problem is called
operation placement.

For example, a VLIW machine may have 16 memory
banks and 32 different functional units implementing the
integer-add operation. To minimize data movement, the
compiler must try to perform the vector indexing calcula-
tions on integer ALUs near the memory bank containing
the vector elements.

Data r o u t i n g is t h e problem of choosing data paths
(buses and registers) to move data between elements of
the machine. Between a source and destination there
might be several paths, and the compiler must pick one
that will least conflict with other activities. The move
might take several hops between the source and destina-
tion, and the compiler must allocate a register after each
hop to temporarily hold the value.

Finally, register allocation is tougher with a VLIW,
since it could have a t least as many register banks as
functional units. The compiler must not only decide
when to move a value into a register from memory but
also which banks will hold the value. Sometimes it's ad-
vantageous to copy a value into several banks so that it
can be used by many functional units simultaneously.

Obviously, operation placement, data routing, and
register allocation are all interdependent. Compilers for
existing horizontally-microcoded machines haven't had to
deal with these problems because the target architectures
offer little choice: An operation can be done in only one
or two functional units, there are only one or two paths
between any two points in the machine, and a functional
unit is serviced by only one or two register banks.

42

We've built two code generators for the Bulldog com-
piler, one that uses a sophisticated strategy and one that
uses a much simpler strategy but handles a more realistic
range of machine models. The two code generators differ
primarily in their approach to operator placement and
register allocation.

The code generators get a trace of basic blocks as input
and produce parallel machine code as output, treating the
trace as if it were one very large basic block. Like many
traditional code generators, our code generators convert
the intermediate operations into a directed acyclic graph.
The nodes of the DAG represent operations, and there is
an edge between two nodes if one node uses the value
produced by the other. They then form a schedule of
machine instructions by traversing the nodes in some
topological order, choosing machine operations for inter-
mediate operators and filling the instructions of the
schedule with the machine operations chosen. To prevent
illegal code motions past jumps and to force undis-
ambiguated memory references to be evaluated in the cor-
rect order, new edges are introduced to prevent one node
from being evaluated before another.

T h e O p e r a t i o n - S c h e d u l i n g C o d e G e n e r a t o r
Of the two code generators, the operation scheduler [17]

uses the more sophisticated strategy. Operation place-
ment, data routing, and register allocation are all delayed
as long as possible, and the decisions about a particular
intermediate operation are not made until the very point
when the operation is placed on the schedule of machine
instructions.

The parameterized machine model used by the current
operation scheduler is limited in one important sense:
Every functional unit has only a single feasible register
bank to use for its result. This means that its register
bank choices are in some cases fully constrained by the
choice of functional units. But this is a restriction of the
current implementation, not of the general technique.

To generate code for a trace, the operation scheduler
forms an expression DAG. It then enumerates the nodes
of the DAG (operations) in a topological order, placing
the operations on the schedule of machine instructions.
As each operation is considered, the code generator
chooses a functional unit, data paths to deliver the
operands to the functional unit, and a register bank to
hold the result, and it finds cycles on the schedule where
these actions can be placed.

To make these choices, the operation scheduler first cal-
culates an earliest cycle that an operation could be
scheduled based on the availability of operands. For each
operand, a list is kept giving all the cycles and locations
the operand is available. An operation can be started
only after all the operands become available. (The reor-
dering constraints of trace scheduling and disambiguation
also affect the earliest cycle.)

The operand availability lists are also used to compute
a search list of likely functional units for an operation.
Functional units closest to the operands are considered
first, and distant units are considered last. That is, the
list is ordered by the longest data path of any operand to
the functional unit.

proc. SearchForBinding(operation)
m e r cycle f r o m EarliestCycle(operation) do

for each fu in FunctionalUnitSearchList(opera-
tion) do

i f fu is available at cycle and the operands
can be fetched to fu's inputs by cycle
and there is a register for the result at
cycle

then
Schedule operation to take place in fu
at cycle.
Schedule the data movements for the
operands and the result.
return

Figure 3: Algorithm for binding intermediate opera-
tions

proe FindDataPath(start-bank, end-bank, start-cycle,
due-cycle)

if start-cycle :> due-cycle then
return false

if start-bank ---- end-bank then
return true

incr cycle from start-cycle to due-cycle do
for next-bank in SP[start-bank, end-bank] do

i f the data-path from start-bank to next-
bank is
available in cycle

then i f FindDataPath(next-bank, end-
bank, cycle + 1,

due-cycle)
then

return true
return false

Figure 4: Algorithm for finding data paths

Figure 3 sketches the algorithm that binds intermediate
operations to particular functional units, data paths, and
register banks and schedules the machine operation.

Starting with the earliest cycle an operation could be
scheduled, each functional unit in the search list is con-
sidered in turn. If the functional unit is not in use that
cycle, if the operands can be moved to the inputs of the
functional unit by that cycle, and if a register is available
to hold the result, then the operation is scheduled on that
functional unit in that cycle. Otherwise, the next cycle is
considered, and the entire search process repeated.

The dynamic method for finding data paths relies on a
short-path table indexed by register banks. For every
pair of register banks Ri and Rj, SIP[Ri, Rj] gives a list
of register banks immediately adjacent to Ri that are on
short paths from Ri to Rj.

The search for a data path is performed by the recur-
sire procedure shown in figure 4. FindDataPath
returns true if it can find a path between register banks
s t a r t - b a n k and end-bank. The parameter start-cycle
is the first cycle that the value in question is available in
the starting register bank, and due-cycle is the last al-
lowable cycle the value may be delivered to the ending
register bank. To find a path between s t a r t - b a n k and
end-bank, the procedure looks for a path from start-
bank to an adjacent register bank nex t -bank ; if it finds

43

one, it then recursively looks for a path from n e x t - b a n k
to end-bank .

It's possible that the order in which operations are con-
sidered may affect the parallelism of the machine code.
In general, there are many topological orderings of a
DAG, and the code generator must choose one. We've ex-
perimented with several ordering heuristics, including
height in the DAG (maximum distance to an exit) and es-
timated execution counts. The preliminary results have
been mixed; there haven't been great differences between
the heuristics.

T h e L i s t - s c h e d u l i n g C o d e G e n e r a t o r
The list-scheduling code generator [4] is the simpler of

the two code generators. Only a sketch of the algorithm
will be given here.

The code generator uses a parameterized machine
model capable of describing a large class of realistic VLIW
architectures. The elements of the model are register
banks, functional units (memory banks, adders, mul-
tipliers, etc.), and the connections between them. Ar-
bitrary topologies of elements can be constructed. A
shortest-path table is computed from the machine descrip-
tion giving ~he time delay and shortest path between any
two elements.

Specified for each register bank are the number of
registers and the number of input and output ports.
Specified for each functional unit are the operations im-
plemented by that unit, the time delay of the operations,
and how frequently pipelined operations can be initiated.
Associated with every register bank and functional unit
are sets of resources required to perform the operations of
that element; similarly, every point-to-point connection
between elements has an associated set of resources re-
quired to move data across the connection. These
resource sets let us describe conflicts due to hardware
limitations, e.g. that only one of two buses may be used in
any cycle, or that a memory bank can initiate at most
two reads or writes every three cycles.

Generating code for a trace consists of three main
phases: representing the trace as a directed acyclic graph,
functional unit assignment, and list scheduling. The as-
signment phase picks functional units for each of the in-
termediate operations, and the list-scheduling phase then
enumerates the nodes in a topological order, packing them
into machine instructions.

The assignment phase is analogous to the register al-
location of traditional compilers, and in fact was inspired
by the top-down-greedy register-allocation algorithm [3].
Traditional register allocation tries to assign a limited set
of registers to the operations of the DAG, minimizing the
movement of data between registers and memory.
Analogously, the assignment phase allocates functional
units to intermediate operations, minimizing the costly
movements of data between distant functional units.

The assignment algorithm simplistically assumes that
the functional units are the only limited resource and that
there will never be any bus or register-port conflict when
moving values between functional units. Using a reeur-
sive procedure Assign, the code generator attempts to
pick a good functional unit for each node (intermediate
operation) in the DAG, making a guess as to which cycle

fo r each node with no successors (readers) do
Assign(node, empty-set)

p r o c Assign(node, estimated-destinations)
/* Assigns a functional unit to node. estimated-

destinations is a guess as to tile set of functional
units where the value produced by node might be
used. */

if node is already assigned t h e n
r e t u r n

for each operand of node do
Assign(opcrand, LikelyFUs(node, estimated-
destinations))

Pick one of LikelyFUs(node, estimated-destinations)
and assign it to node. Estimate tile the earliest cycle
in which it can be scheduled and record the func-
tional unit as being busy during that cycle.

p r o c LikelyFUs(node, estimated-destinations)
/* Returns a set of functional units that could com-

pute node and move its value to estimated-
destinations as early as possible. */

Consider each functional unit capable of computing
node. For each unit, estimate the earliest cycle that
the values of the operands could be moved to the
unit, the operation computed, and its value moved to
the closest of estimated-destinations. Return the
functional units having the earliest such cycles.

F ig u re 5: The functional-unit assignment algorithm

the operation will be scheduled. The measure of goodness
of an assignment is how early the operation can be
scheduled on the assigned functional unit and its
produced value moved to the functional units of the
operations reading the value.

Assign, shown in figure 5, recursively propagates from
the exits to the entrances of the DAG estimates of where
an operation can be best computed. When it reaches the
entrance nodes, it then works its way back to the exit
nodes, making final assignments of functional units to
operations.

Once functional units have been assigned to operations
of the DAG, the list-scheduling phase emits actual
machine code by enumerating the nodes in a topological
order and filling in the schedule of machine instructions.
The instructions are formed in order: first cycle 0, then
cycle 1, then cycle 2, etc. To form the next instruction,
the list scheduler considers all nodes that are d a t a
r eady , i.e. nodes all of whose predecessors have already
been scheduled. It fills the instruction with as many of
tile data-ready operations as possible using first-fit; when
no more can be squeezed into the current instruction, it is
emitted and a new instruction started.

During assignment and list-scheduling the code gener-
ator is often faced with a choice of several nodes. For ex-
ample, at each step in list-scheduling there are many
data-ready nodes, only some of which will fit into the cur-
rent instruction. In such cases, the code generator orders
tile nodes by height (maximum distance to an exit of the

44

DAG), on the assumption that the nodes of greatest
height are the most time-critical and should take priority

Tile destination register bank and register for a value
produced by an operation are chosen on the fly when
scheduling the operation. The list scheduler looks for an
available register bank on the shortest path between the
functional unit producing the value and the functional
units that will be using the value.

Data movements between distant register banks are
also scheduled on the fly during list scheduling. As soon
as a value-producing operation is scheduled, the list
scheduler looks at all the operations reading the value. If
any are more than one register bank away, the list
scheduler inserts special copy nodes into the DAG be-
tween the producing node and the distant reading nodes
that will move the value to the distant functional units.
These copy nodes will be scheduled just like normal
operations, getting the values to the reading functional
units as early as free hardware resources will allow.

List scheduling Versus Operat ion Scheduling
How do the two code generators compare?

We haven't yet run extensive experiments, but prelimi-
nary results indicate that on simple machine models there
is little difference in the quality of the object code
produced. Why little difference? It would seem that the
exhaustive branch-and-bound search methods of the
operation scheduler would surely do better than the
simple heuristics of the list scheduler. But the operation
scheduler offers only a simplified machine model with few
interdependencies; the critical resource in the model ap-
pears to be functional units, not data paths or register
bank-access. Since the list scheduler assumes that the
only critical resources are functional units, it's not surpris-
ing that there is no difference between the two code
generators on the simplified model.

It's likely that with complicated machine models having
limited data paths and complex topologies, an operation
scheduler would generate better code than the list
scheduler. But expanding the branch-and-bound search of
the operation scheduler to efficiently handle more realistic
machine models might make the operation scheduler more
complicated.

As for compilation time, right now the list scheduler is
slightly faster. Both code generators take time linearly
proportional to the size of the input trace. But the list
scheduler time is linearly proportional to the size of the
machine model, whereas the branch-and-bound search of
operation scheduling takes time exponentially propor-
tional to the complexity of the machine model. We're not
sure how severely this exponential factor might slow down
operation scheduling with complex machine models.

The complexity of the implementations are roughly
comparable (about 7000 lines of code), always an impor-
tant consideration for practical compilers. Again, the
operation scheduler might become significantly more com-
plicated when it is expanded to handle more realistic
machine models.

Looking ahead, perhaps a combination of the two code
generators might provide the best solution. The func-
tional unit assignment algorithm of the list scheduler

could be used to heuristically guide the branch-and-bound
search of the operation scheduler.

P r e l i m i n a r y R e s u l t s
We're currently running extensive experiments measur-

ing the performance of our compiler. As test data we're
collecting a quite respectable library of scientific Fortran
routines. We're running all of the routines through the
compiler and measuring their performance on four
machine models.

The ideal machine has infinite resources: infinite
registers and functional units, no communications penalty,
and l-cycle operations. Performance of the ideal machine
shows how much parallelism trace scheduling and dis-
ambiguation can find; parallelism is measured by taking
the ratio of sequential operations to ideal machine instruc-
tions.

The s imple ELI, used by both the operation-
scheduling and the list-scheduling code generators, is an 8-
cluster machine similar to figure 1, each cluster having 4
functional units connected by a complete crossbar to a
multi-ported register bank. The simple ELI is more
realistic than the ideal machine, but is still impractical.

The rea l is t ic ELI is an 8-cluster machine, each cluster
having partial crossbars and multiple, practically ported
register banks. It is very close to the actual ELI currently
being designed. Only the list scheduler can generate code
for the realistic ELI.

The pipelined-sequential machine is a traditional
machine "built with the same technology" as the realistic
ELI. But it has one cluster for which only one pipelined
operation can be initiated every cycle, and the register
bank allows only 2 reads and 1 write every cycle. This
model resembles a CDC 6600 or the scalar portion of the
Cray.

Comparing the simple and realistic ELI models with the
pipelined-sequential model will tell us how much of the
extra parallelism offered by the ELI models is actually
being used by the compiler.

Our library currently consists of:
Simple matrix operations (multiply, transpose, add,

reduce)
Generating prime numbers
Convolution
FFT
LU decomposition
Tridiagonal solvers (3 versions)
Quicksort
LINPAK inner loops (LINPAK is a widely used

Fortran package for solving linear systems)
Soon we'll be adding the following routines taken from
Forsythe, Malcom, and Moler [8]:

Spline interpolation
Integration using adaptive quadrature
Initial value ODE. RKF45
Solving non-linear equations
One-dimensional optimization
Singular value decomposition

Complete results for running all of these programs on
all four models will be presented at the conference and in

45

the theses soon to appear [4, 17]. We've compiled all of
the first group for the ideal machine and a few for the
simple ELI and the realistic ELI.

So far we've only had time to analyze Fast Fourier
Transform in any depth. On the ideal machine, we've got
a speedup of 47 (that's the ratio of sequential ideal in-
structions to parallel ideal instruetions). On the simple 8-
cluster EL1 we've got a speedup of 7.5 (the ratio of
pipelined-sequential instructions to simple ELI
instructions). The input vector size was 512.

Of the other programs, we've run many of them
through the compiler and generated correct code, but we
haven't analyzed and tuned them yet for performance
(disambiguating memory references, unrolling and reor-
ganizing loops for maximum parallelism, etc.). However,
their performance on the ideal machine shows how much
parallelism the trace scheduling and disambiguation are
finding. From the results shown in figure 6 you can see
that the Bulldog compiler is finding quite a bit of paral-
lelism in ordinary scientific code. We're confident that on
most of the routines we'll get realistic ELI performance
similar to FFT's performance.

Program Speedup
FFT 47
Tridiagonal solver 9
LU decomposition 12
LINPAK inner loops 11
Prime number generation 13
Matrix multiply 25*
Convolution 25*

*The parallelism found by the compiler in these
simple programs is limited only by the size of
the input data.

Figure 6" Ideal machine speedup (sequential
instructions/parallel instructions)

Previous W o r k
Early parallelism experiments [9, 10] indicated that

there was very little available parallelism in ordinary
programs. The pessimism of those experiments combined
with the difficulty of hand-coding VLIWs focused research
on multiprocessors, vector machines, and data flow
machines and away from VLIWs.

Data flow machines are still a gleam in the researcher's
eye. Maybe they'll eventually provide thousand-fold
parallelism, but there are still too many unsolved
problems. Meanwhile, the ELI project has demonstrated
a practical hardware and software architecture that offers
mere ten-fold speedups right now.

There has been little sueeess in compiling programs for
multiprocessors. For example, the Cm* project [11] was
hamstrung by the difficulty in distributing programs
among the multiple processors.

The major effort in automated code production for vec-
tor machines and multiprocessors was undertaken at the
University of Illinois. Kuck and his group developed a
system, Parafrase, whose main goal is to generate code for
fast, highly parallel machines [16]. Parafrase relies on ex-

tensive global data-dependence analysis and no global
flow information. A memory-reference disambiguation
mechanism eliminates superfluous dependency edges in
the data-dependency graph due to ambiguous array
references [2]. Using a large library of source transfor-
mations, Parafrase attempts to fit the available paral-
lelism to the target architecture. Because the architec-
tures cannot use fine-grained, operation-level parallelism,
the disambiguator and the transformations operate at a
coarse, all-or-nothing level, ignoring anything that cannot
fit the mold. As a result, Parafrase ignores large amounts
of parallelism existing in ordinary programs.

Many of the ideas of our project were originally
motivated by the research on the compilation of high level
languages into horizontal microcode. Fisher's thesis intro-
duced the concept of trace scheduling and discussed
heuristics for using list scheduling to generate horizontal
microcode from vertical microeode [5]. Sites used list
scheduling to optimize the code for the scalar, pipelined
portion of the Cray [18]. Since then there have been
many papers about variants on trace scheduling and other
techniques attempting translation into horizontal
microcode [12, 13].

Our research significantly differs from this microcode
research. First, the VLIW architectures we've been
studying are not horizontally-microcoded machines they
are reduced-instruction-set processors that hide the
detailed complexity and asymmetry of mierocode, while
offering many times the architectural parallelism of cur-
rent mierocoded machines. Second, most of the
microcode compilation techniques generate vertical
microcode with registers, functional units, and data paths
already assigned; then they try to compact the vertical
code into horizontal code, perhaps reassigning registers
and functional units in the process [10]. Finally, most of
the microcode research is paper research with very few
people actually building real compilers.

A c k n o w l e d g e m e n t s
Olher participants in the ELI project include John

O'Donnell. Charles Marshall. Abhiram Ranade, Mark
Sidell, Doug Baldwin, and Richard Kelsey.

This work was supported in part by the National
Science Foundation grants #MCS 81-06181 and #MCS
83-08988 and the Office of Naval Research contract
#N000014-82-K-0184.

References

[1] A.V. Aho and J. D. Ullman.
Principles of Compiler Design.
Addison-Wesley, 1977.

[2] Uptal Banerjee.
Speedup of ordinary programs.
Technical Report UIUCDS-R-79-989, University of Il-

linois Department of Computer Science, October
1979.

[3] William A. Barrett and John D. Couch.
Compiler Construction: Theory and Practice.
Science Research Associates, Chicago, 1979, pages

581- 587.

[4] John R. Ellis.
Bulldog: A Compiler for VLIW Architectures.
PhD thesis, Yale University, July 1984.
Expected.

[5] J.A. Fisher.
The optimization of horizontal microcode within and

beyond basic blocks: An application of processor
scheduling with resources.

U.S. Department of Energy Report COO-3077-161,
Courant Mathematics and Computing
Laboratory, New York University, October 1979.

[6] Joseph A. Fisher.
Very long instruction word architectures and the

ELI-512.
In The lOth Annual International Symposium on

Computer Architecture, pages 140-150. IEEE
Computer Society and Association for Computing
Machinery, June 1983.

[7] Joseph A. Fisher and John J. O'Donnell.
VI,IW Machines: Multiprocessors we can actually

program.
In Compcon 8.t, pages 299-305. IEEE Computer

Society, February 1984.
[8] George E. Forsythe, Michael A. Malcolm, and Cleve

B. Moler.
Computer Methods for Mathematical Computa-

tions.
Prentice-Hall, 1977.

[9] C.C. Foster and E. M. Riseman.
Percolation of code to enhance paralld dispatching

and execution.
IEEE Transactions on Computers 21(12):1411-1415,

December 1972.
[101 John Hennessy and Thomas Gross.

Postpass code optimization of pipeline constraints.
A C M Transactions on Programming Languages and

Systems 5(3):422-448, July 1983.
[11] Anita K. Jones and Edward F. Gehringer, editors.

The Cm* multiprocessor project: A research review.
Technical Report CMU-CS-80-131, Computer Science

Department, Carnegie-Mellon University, July
1980.

[12] Association for Computing Machinery.
12th Annual Microprogrammino Workshop, 1979.

[13] Association for Computing Machinery and IEEE
Computer Society.

The 16th Annual Microprogramming Workshop,
1983.

[14] Alexandru Nicolau and Joseph A. Fisher.
Using an oracle to measure parallelism in single in-

struction stream programs.
In l j th An n ual Microprogramming Workshop, pages

171-182. ACM Special Interest Group on
Microprogramming, October 1981.

[15] Alexandru Nicolau.
Parallelism, Memory Anti-aliasing and Correctness

Issues for a Trace Scheduling Compiler.
PhD thesis, Yale University, June 1984.
Expected.

[16] D. A. Padua, D. J. Kuck, and D. H. Lawrie.
High speed multiprocessors and compilation tech-

niques.
IEEE Transactions on Computers 29(9):763-776,

September 1980.
[17] John C. t/uttenberg.

Delayed Binding Code Generation for a VLIW Su-
pereomputer.

PhD thesis, Yale University, June 1984.
Expected.

[18] Richard L. Sites.
Instruction ordering for the Cray-I computer.
Technical Report CS-023, Department of Electrical

Engineering and Computer Science, University of
California at San Diego, July 1978.

Ellis remembers reading this six years ago. He's
talked to Sites, who remembers his work on this
problem quite well, but doesn't remember writing
the teeh report. Ellis has also talked to the
secretary responsible for distributing UCSD Com-
puter Science reports, and she claims this report
really does exist. But we haven't yet received our
copy.

[191 G. S. Tjaden and M. J. Flynn.
Detection and parallel execution of independent in-

structions.
IEEE Transactions on Computers 19(10):889-895,

October 1070.

47

