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Abstrac t  
Multiprocessors and vector machines, the only success- 

ful parallel architectures, have coarse-grained parallelism 
that is hard for compilers to take advantage of. We've 
developed a new fine-grained parallel architecture and a 
compiler that together offer order-of-magnitude speedups 
for ordinary scientific code. 

I n t r o d u c t i o n  
Compilers have traditionally played second fiddle to 

hardware projects in parallel processing. Parallel ar- 
chitectures have been built to be hand coded, and at- 
tempts at compiler writing were mere afterthoughts. 
These attempts have been unsurprisingly unsuccessful. 

The two most common types of parallel architectures 
built to date have been vector machines and multiproces- 
sots. Compiling (or simply hand coding) for either re- 
quires matching an overview of the coarse structure of the 
application to that of the hardware. It's conceivable that 
hand coders and compilers might someday be good at 
this; but so far they haven't been, and there's no reason 
for optimism. There has been a genera.] failure at culling 
large amounts of parallelism from ordinary applications. 

So instead of building an architecture first and a com- 
piler second, we have simultaneously developed a compiler 
and an architecture intended for scientific computing. 
Using a technique called trace scheduling, the Bulldog 
compiler finds large amounts of parallelism in ordinary 
scientific code. Taking advantage of this parallelism re- 
qlfires a new architecture~ which we call VLIW (Very 
Long Instruction Word). 

The Bulldog compiler is finished, and it compiles or- 
dinary scientific programs into highly parallel machine 
code for a large class of VLIWs, achieving order-of- 
magnitude speedups over traditional architectures. We 
think VLIW architectures are practical in the very near 
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future, and we're building a VLIW machine, the ELI 
(Enormously Long Instructions) to prove it. 

In this paper we'll describe some of the compilation 
techniques used by the Bulldog compiler. The ELI 
project and the details of Bulldog are described 
elsewhere [4, 6, 7, 15, 17]. 

V L I W  Archi tectures  
Highly parallel machines that actually have been built 

fall into two broad classes: multiprocessors and vector 
machines. Both classes provide coarse-grained parallelism 
which is hard for a compiler to use. 

With multiprocessors, a compiler must minimize com- 
munication and synchronization while trying to keep all 
the processors busy, avoiding the delays when one proces- 
sor must wait for another. This forces a compiler to look 
for large sections of relatively independent control and 
data; compilers have only been able to do this for 
programs consisting of simple data-independent inner 
loops. 

With vector machines, a compiler must find large ag- 
gregates in the program that can he fetched and operated 
upon simultaneously using relatively simple operators. 
This requires finding a high degree of regularity in the 
data and control, and compilers haven't been able to do 
that either for very many programs. 

Instead of coarse-grained parallelism inaccessible to a 
compiler, VLIWs provide fine-grained parallelism that a 
trace-scheduling compiler can easily use. In a VLIW 
machine, every resource is completely and independently 
controlled, by which we mean: 

Timing control. Every single action takes an 
amount of time predictable by the compiler. 
The time may vary according to the operation. 

Flow control. There is a single thread of control, 
a single instruction stream, that initiates each 
fine-grained operation; many such operations can 
be initiated each cycle. 

Communications control. All communications 
are completely choreographed by the compiler 
and are under explicit control of the compiled 
program. The source, destination, resources, and 
time of a data transfer are all known to the com- 
piler. There is no sense of packets containing 

37 



destination addresses or of hardware scheduling 
of transfers. 

Such fine-grained control of a highly parallel machine 
requires very large instructions, hence the name Very 
Long Instruction Word architecture. 

Figure 1 shows a picture of a hypothetical VLIW 
machine. It has 16 c lus te r s  connected by simple data 
buses. Each cluster is a reduced instruction set processor 
that has local registers, instruction memory, optional data 
memory, a few functional units implementing integer 
and/or  floating scalar operations, and a partial crossbar 
connecting these elements within the cluster. 

Figure 1: A hypothetical VLIW; each box is a separate cluster 

All the clusters run in lockstep and are controlled by a 
single instruction stream. An instruction specifies the ac- 
tion of every element of every cluster independently; for 
example, one instruction may initiate a floating add in 
cluster 1, a floating subtract in cluster 2, an integer mul- 
tiply in cluster 3, a register transfer between clusters 1 
and 4, etc. Consequently, instructions will be very large 
(at least several hundred bits). 

VLIW machines are far too large to have a single 
crossbar connecting all their elements. Instead, the 
clusters are connected by buses for transferring scalar 
values. It may well take several hops to move a value be- 
tween distant clusters. 

VLIWs need not have the regularity implied by the pic- 
ture. The interconnections between the clusters, the type 
and number of elements within the clusters, and the con- 
nections between cluster elements can (and probably will) 
be asymmetric. 

Before the advent of trace scheduling, it wasn't prac- 
tical to build VLIW machines because no mere mortal 
could program them by hand. It is just barely possible to 
program horizontally microcoded machines and wide 
processors such as the FPS-164 and the MARS-432, but 
the amount of effort involved is tremendous. Program- 
ming a VLIW with 16 or more times the number of func- 
tional units is out of the question. Without a compiler for 
a high-level language, VLIWs would be useless. 

C o m p i l e r s  f o r  V L I W s  
At first blush compiling high level languages for VLIWs 

might appear to be an impossible task, given that they 
are programmed at such a low, detailed level. But in fact 
the Bulldog compiler isn't that much different from a 
traditional optimizing compiler. 

A traditional compiler parses the source program into 
an intermediate code, optimizes that intermediate code, 
and then translates the intermediate code into machine 
code. Usually, the translation to machine code is done 
one b~sic block at a time, perhaps after registers have 
been globally allocated. 

It wouldn't be hard to construct a basic-block code gen- 
erator for VLIWs. Several such code generators were 
written for machines with limited fine-grain parallelism 
such as the the FPS-164, the CDC machines, and the 
scalar portion of the Cray [18]. Par t  of the problem is 
equivalent to that of statically scheduling a set of inter- 
dependent jobs with different resource requirements on a 
fixed set of processors; this problem has been studied for 
years and there are many practical solutions [5]. 

But basic blocks have severely limited parallelism; ex- 
periments showed early on that one could expect at most 
a two- or three-times speedup by executing basic blocks in 
parallel [9, 19]. A basic block-based code generator 
couldn't hope to keep a VL1W with 16 or 32 processors 
busy. So no one ever built a VLIW. 

Later experiments [14] showed, however, that if one ig- 
nored the artificial constraints imposed by basic blocks, 
ordinary scientific programs contained large amounts of 
parallelism--factors of 90 on average. If only a compiler 
could find it, such parallelism is more than enough to 
keep a VLIW busy. 

Trace S c h e d u l i n g  
Trace scheduling finds much of that factor-of-90 paral- 

lelism by giving more than one basic block at a time to 
the code generator. To generate machine code, the com- 
piler repeatedly traces out a path of many basic blocks in 
the intermediate-code flow graph and hands that entire 
path to the code generator. These paths, or t races ,  con- 
tain much more parallelism than basic blocks. The code 
generator treats the trace of blocks almost as if it were a 
single, very large basic block. 

The compiler picks a trace, generates code for it, picks 
another trace, generates code for it, and so on until the 
entire flow graph has been translated to machine code. 
Estimates of execution frequency guide the compiler in 
picking traces; the blocks most likely to be executed com- 
prise the first trace, those next likely to be executed com- 
prise the second trace, and so on. Figure 2 shows a 
simple program and the traces selected from it. 

The current compiler uses loop nesting and 
programmer-supplied hints to make reasonable guesses 
about block execution frequency; this method appears to 
work fairly well without too much help from the program- 
mer. One could easily imagine an automatic profiler that 
would supply execution counts based on sample runs of 
the program, though it's doubtful that it would do much 
better than tile current method of guessing. 

For various reasons, a trace never extends pa-~t a loop 
boundary. That  is, a trace can include only blocks from 
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Figure 2: A flow graph with the traces selected from it 

the same loop, but no blocks from containing or contained 
loops. 

To further increase the parallelism of traces, the com- 
piler unrolls the bodies of inner loops as many as 32 times 
immediately after parsing the source program into inter- 
mediate code. For example, a loop such as: 

i :=I 
LOOP { 

IF i > n THEN EXIT 
body 
i :=i+l 
} 

unrolled three times would look like: 

i :=I 
LOOP { 

IF i > n THEN EXIT 

body 
i :=i+l 

IF i > n THEN EXIT 

body 
i :=i+l 

IF i > n THEN EXIT 

body 
i :-i÷l 
) 

This unrolling produces much longer traces, increasing 
the potential parallelism available to the code generator. 
(Later we'll see other uses for unrolling.) 

To get parallel code the code generator must substan- 
tially reorder the trace's intermediate-code operations, fill- 
ing machine instructions with operations that come from 
widely separated places in the program; time-critical 
operations are usually scheduled early, while non-critical 
operations are often delayed. In a basic-block code gener- 
ator of a traditional compiler, this reordering is relatively 
easy [1, 18]. 

By doing one basic block at a time, a traditional code 
generator is assured that all jumps into the block from 
the outside are to the block's first instruction, and that 
there is at most one conditional jump in the block, which 
must be at the end. But looking at figure 2, one im- 
mediately notices that traces consisting of many blocks 
will have more than one conditional jump and that there 
will be jumps from outside the trace into the middle of 
the trace. This complicates the task of reordering con- 
siderably; in addition to the normal data-precedence rules 
for basic block operations, the compiler must also worry 
about jumps off the trace and jumps into the trace. 

Let's first consider reordering in the presence of con- 
ditional jumps. Suppose that we have the following frag- 
ment of a flow graph: 

I ! 
I 

I'-. IF 10 i' : - , .  3] 
I I 

13. d Is. g . - -d-" i  I : f f i  a - 3 [  
I 

I I 
and that the current trace consists of operations 1, 2, and 
3. Suppose that the code generator decides that operation 
1 is not time-critical and should be moved below the con- 
ditional jump 2. If it moves 1 below the jump, then 
operation 4, which reads the variable a written by 1, will 
get the wrong value of a. So if 1 is moved below 2, the 
compiler will have to make a copy of 1, 1', on the off- 
trace edge of the jump: 

i 

I 

I I 

J I 
Conversely, suppose that the code generator decides 

that 3 is time-critical and would like to move it before the 
jump. Because 3 writes the variable d, and 5 reads the 
previous value of d, moving 3 above the jump would be 
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incorrect, since 5 would then Set the wrong value of d. If 
the value of d were not used on the off-trace edge of the 
jump, then moving 3 above the jump would be permis- 
sible. 

What about jumps from blocks outside the trace into 
the middle of the trace? For example, assume that in the 
following fragment the current trace consists of operations 
1, 2, and 3: 

I 
I1. a : - b .  cl 

I 
x . - x .  11 

k ~  

[3. d := a - 3[ 

I 

I 
14. a':e*f 

Suppose 3 was time critical and the code generator 
wanted to move it before 2, above the spot where 4 jumps 
to the trace. By itself, this motion is incorrect, because 4 
writes variable a and 3 reads it; 3 would no longer get the 
correct value of a from 4. The solution is to make a copy 
of 3, 3', on the incoming edge right below 4; in this way, 
no matter which path is executed, d will still get the same 
value. 

I I 

I I 
[3. d := a -  3[ [3: d := a - 3J 

i f 
The general rules for code motions relative to jumps 

and rejoins within a trace are: 

If a trace operation moves below a conditional 
jump, a copy of it must be placed on the off- 
trace edge of the jump. 

A trace operation that writes a variable can't 
move above a conditional jump if the variable is 
live on the off-trace edge of the jump. 

If a trace operation moves above a rejoin to the 
trace, then a copy of it must be placed on the 
off-trace rejoining edge. 

In these examples we've only considered simple opera- 
tions moving past jumps and rejoins to the trace, but con- 
ditional jumps as well may move past other jumps and 
rejoins. The same rules apply, though there are some 
minor complications in copying conditional jumps. 

After generating machine code for a trace, the copies of 
intermediate code operations resulting from the code mo- 
tions are inserted into the flow graph. They will be 

selected and compiled as part of later traces. One might 
think that excessive code motion would cause an explosion 
in copied operations, resulting in a very large object 
program, or perhaps that trace scheduling doesn't even 
terminate. In fact, it does terminate [15], and experi- 
ments show that the amount of copying is quite 
acceptable [4]. 

M e m o r y  R e f e r e n c e  D i s a m b i g u a t i o n  
Indirect memory references arising from pointer 

dereferencing and array indexing pose special problems 
for a trace-scheduling compiler. Long traces contain 
many such indirect references, and in order to take ad- 
vantage of the potential parallelism in the trace, the code 
generator must be able to reorder the references as it does 
other operations in the trace. To see why, consider this 
fragment of a trace: 

1. v i i ]  := e l  
2. x := v[i] 
3.  v[j] := e2 
4, y := v[j] 

Without knowing anything about the indices i and j ,  a 
compiler must assume that i could equal j ,  and thus that 
operation 3 must be executed after both 1 and 2; under 
this assumption, there is no available parallelism in the 
fragment. But if the compiler knew somehow that I and J 
were never equal, then 1 and 3 could be performed in 
parallel and 2 and 4 in parallel, a doubling in speed. 
Analogous situations arise from dereferencing pointers. 

To achieve the most parallelism, the compiler must dis- 
ambiguate as many memory references as possible, deter- 
mining whether they could possibly be to the same 
memory location. Disambiguating pointer dereferences is 
tough; there are few obvious clues in the program to help 
the compiler determine whether two pointers might point 
at the same object. But in our target domain of scientific 
code, the inner loops consist almost entirely of array 
references, and it usually isn't hard to disambiguate such 
references. 

The disambiguator is a separate module of the Bulldog 
compiler. The code generator asks the disambiguator 
questions of the form, "Can these two vector references 
possibly refer to the same memory location?" The dis- 
ambiguator answers yes, no, or I-don't-know. The I- 
don't-know answers are the ones that restrict parallelism. 

How does the disambiguator disambiguate two vector 
references v [ i ]  and v [ j ]  ? Using the conventional flow 
analysis of reaching definitions, the disambiguator derives 
symbolic expressions e i and ej for the indices i and j in 
terms of the induction variables and loop invariants of the 
loops enclosing the two references. It then compares the 
two expressions symbolically to see if they could possibly 
be equaL; that is, it sees if there are any integer-valued 
solutions to the equation e.-e.=0. 

i 1 
For example, suppose that for the following code the 

code generator asked about the two vector references 
V [ j ]  a n d v [ k ] :  
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m := e l  
FOR i := I to n DO { 

j :=i+m 
v [ j ]  := e2 
k : = j  + 1  
x := v [ k ]  
} 

The disambiguator derives the expressions i+m for in- 
dex j and i+m+l for index k. The two indices are equal 
if and only if (i+m)-(i+m+l)=O. The disambiguator 
simplifies that to -1=0  and concludes that j could not 
possibly equal k; therefore, v [ j ]  and v [ k ]  refer to dif- 
ferent memory locations. 

Often the equation doesn't simplify so neatly; for ex- 
ample, what about 4 I + 2 J + I = 0 ?  Finding solutions to 
integer-valued equations is a well known problem in num- 
ber theory, and for linear equations the question is easy to 
answer; luckily almost all derivations of vector indices in 
scientific code are linear. (There are no integer solutions 
to ,1l+2.|+1--0.) 

lhlt what about the copying of operations resulting 
from code motions during trace scheduling? The program 
is continually changing due to these copies being inserted 
in the flow graph, and it might seem that the flow 
analysis information must be incrementally reeomputed 
after each trace. Fortunately this is not the ease, and a 
static reaching analysis is sufficient [15]; intuitively, this is 
because the trace-scheduling algorithm, preserves, in a 
loose sense, the reaching definitions of copies. 

Our experience so far has been that this simple method 
of disambiguation completely disambiguates most memory 
references in most scientific programs. But this isn't good 
enough---if only two references in an inner loop were not 
disambiguated, actual parallelism could decrease by half 
or even more. Unfortunately, we've found that to make 
the disambiguator more sophisticated would not only be 
difficult to implement, but it would also make compilation 
unacceptably more expensive. And we had several ex- 
ample loops, including the inner loop of Fast Fourier 
Transform, that could be easily disambiguated by hand, 
but for which we had no practical automatic techniques. 
So no matter what level of disambiguator functionality we 
settled on, it still wouldn't be able to handle all the time- 
critical inner loops of scientific programs. 

Some way was needed for the programmer to tell the 
compiler that two memory references are indeed to dif- 
ferent locations. We've implemented an assertion facility 
by which the programmer can tell the compiler key facts 
about the program; if the compiler can't automatically 
distinguish two memory references, it consults  the 
programmer-supplied assertions. 

For example, suppose that the compiler can't dis- 
ambiguate the references in this code fragment: 

x : =  v[i] 
v [ j ÷ k + i ]  := y 

The programmer can add an assertion: 

ASSEKT j+k > 0 
x := v[i] 

v[j+k+i] : = y 

that the compiler uses to deduce that the two vector 
references are to different locations. 

How does the programmer know where assertions are 
needed? The compiler tells him. Whenever it encounters 
two references it can't distinguish, it prints out infor- 
mation identifying them and the simplified symbolic ex- 
pression representing the difference of the vector indices. 
For the above example, it would print out the question: 

j + k  = 07 

So far, it has always been immediately clear to the 
programmer what assertions are needed to completely dis- 
ambiguate the program. Typically, only one or two asser- 
tions are required for any one program; the compiler per- 
forms all the drudge work of applying the assertions to 
disambiguate individual memory references. 

T h e  G l o b a l  M e m o r y  B o t t l e n e c k  
Many designs of parallel architectures fail because of 

lack of memory bandwidth. They have small, fast, local 
memories clustered around the computing elements, with 
large aggregate data stored in a larger, slower, shared 
global memory. For programs that manipulate large ag- 
gregates, especially for scientific programs, the global 
memory Is a severe bottleneck; it can't fetch and store 
elements of the aggregate data fast enough to keep the 
computing elements busy. Put  another way, it is easy to 
build a dual-ported memory, but very hard (and 
expensive) to build an 8- or 16-ported memory. 

Most fast machines use a cache combined with inter- 
leaved memory banks to provide higher bandwidth. For 
example, by putting even addresses into one bank and 
odd addresses into another, the bandwidth doubles, since 
the two banks operate in parallel. But this design doesn't 
scale up easily, because there is still a single central con- 
troller that accepts memory requests and distributes them 
to the individual banks. Servicing two requests at a time 
is easy; servicing 8 or 16 at a time becomes a nightmare. 

We solved the memory bottleneck problem as we solved 
other problems, using a combination of new architecture 
and smart software. We noticed that in scientific 
programs most of the memory references result from small 
inner loops enumerating through the elements of large ar- 
rays. Further, the central memory controller isn't really 
needed for those accesses, since the particular bank of 
each access could be predicted at compile time. If com- 
puting elements could access individual banks without 
going through the central controller, the memory bot- 
tleneck would be alleviated. 

Unfortunately, even in scientific code it is not always 
possible to compute the banks of memory references at 
compile time. Even if the architecture supports direct 
reference to banks, it must still support general references 
for which the bank is not known statically. 

In the ELI architecture, each memory bank has a 
f r o n t d o o r  and a b a c k d o o r .  The frontdoor provides 
direct access for memory references known at compile 
time to be in the bank. The backdoors of all the banks 
are connected to a more traditional central memory con- 
troller: a memory reference whose bank is unknown at 
compile time must be made through the controller. If the 
compiler can statically determine the bank of a memory 
reference, it will generate code to reference the bank 
directly through the frontdoor; otherwise, it will generate 
a slower backdoor reference. 
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To determine the bank of a memory reference, the 
lhdldog compiler uses techniques very similar to memory 
disambiguation. Flow analysis is used to derive a sym- 
bolic expression for the index of a memory reference; the 
modulo of that index relative to the number of banks 
yields the b'mk. If the compiler can't uniquely determine 
the bank, the programmer can help by adding assertions. 

The compiler ~dso has to apply some source transfor- 
mations. For ex~mple, consider the following implemen- 
tation of vector addition: 

FOR i := 1 TO n DO 

a [ i ]  := b [ ± ]  + c [ i ]  

Suppose we know that our machine has 8-way interleav- 
ing of memory. By unrolling the body of the loop 8 
times: 

FOR i := 1 TO n BY 8 DO 

a [ i + 0 ]  := b[i+O] ÷ c[i+O] 
a l l + l ]  := b [ i + l ]  + c [ i + l ]  
a[i+2] := b[1+2] + c[i+2] 

all+3] := b[1+3] + c[i+3] 
all+4] := b[i+4] + c[i+4] 
a[i+5] := b[i+5] + c[i+5] 
a [ i + 6 ]  := b[i+6] + c [ i + 6 ]  
a[i+7] := b[i+7] + c[i+7] 

it, isn't, hard to determine at compile time the bank of 
each memory access within the loop, given the starting 
address of the vectors. In general, the compiler needs to 
unroll such loops some multiple of the number of banks. 

More sophisticated compiler techniques are used when 
loops aren't as well behaved. For example, if the starting 
index of a loop is not a constant but a variable, a memory 
reference in the loop body could easily be in different 
banks for different executions of the loop. But by adding 
a special pre-loop, the compiler can guarantee that all the 
references in the loop body are to known banks. The pre- 
loop executes a copy of the loop body until the index 
reaches a known value modulo the number of banks, at 
which point control transfers to the main loop. 

For example, given the following loop: 

FOR i := m t o  n DO 

a[i] := b[i] + c[i] 

the compiler (assuming 8 banks) would transform that 
into: 

FOR i := m t o  n DO 
IF 0 = i MOD 8 THEN 

temp := i 
BREAK 

a [ i ]  := b [ i ]  + c [ i ]  
FOR i := temp to n DO 

ASSERT 0 = i MOD 

a[i+O] := b[i+O] 
a[i+l] := b[i+l] 

a[i+2] := b[i+2] 
a [ i + 3 ]  := b[i+3] 
a[i+4] := b[i+4] 
a [ i + 5 ]  := b[1+5] 
a[1+6] := b[i+6] 
a [ i + 7 ]  := b [ i ÷ 7 ]  

8 
+ c [i+O] 
+ c [ i + l ]  

+ c [ i + 2 ]  

+ c [ i+3]  
+ c [1+4] 

+ c [ i+5]  
+ c [ i ÷ 6 ]  
÷ c [ i + 7 ]  

( ] o d e  G e n e r a t i o n  
Generating machine code from intermediate basic 

blocks for a traditional architecture is well 
understood--compilers do it every day. The two main 
problems are register allocation and instruction selection. 
A compiler must decide whether to keep particular values 
in memory or in registers. It must also map intermediate 
operations onto one or more machine instructions, which 
may be difficult if the machine has a rich instruction set. 

The problems faced by a VLIW compiler generating 
code for a large trace are somewhat different and more 
complex. 

Foremost, a VLIW compiler must worry about packing 
many machine operations into a single, large, parallel 
machine instruction. A traditional code generator merely 
outputs a stream of machine instructions, one or more per 
intermediate operation, that are appended together to 
form the object code. But a VLIW code generator must 
juggle the machine operations to get as many as possible 
to fit into each parallel machine instruction. 

Because VLIWs are essentially reduced-instruction-set 
processors, there is no problem in selecting machine 
operators for intermediate code operations, since the in- 
termediate code operations closely correspond to the 
machine level. But unlike a traditional machine, a VL1W 
offers many hardware functional units implementing the 
same operator, and the compiler must choose which one 
to use for a particular intermediate operation. Because of 
the long data paths between distant elements, the code 
generator must try to cluster operations to minimize data 
movement between elements. This problem is called 
operation placement. 

For example, a VLIW machine may have 16 memory 
banks and 32 different functional units implementing the 
integer-add operation. To minimize data movement, the 
compiler must try to perform the vector indexing calcula- 
tions on integer ALUs near the memory bank containing 
the vector elements. 

Data r o u t i n g  is t h e  problem of choosing data paths 
(buses and registers) to move data between elements of 
the machine. Between a source and destination there 
might be several paths, and the compiler must pick one 
that will least conflict with other activities. The move 
might take several hops between the source and destina- 
tion, and the compiler must allocate a register after each 
hop to temporarily hold the value. 

Finally, register allocation is tougher with a VLIW, 
since it could have a t  least as many register banks as 
functional units. The compiler must not only decide 
when to move a value into a register from memory but 
also which banks will hold the value. Sometimes it's ad- 
vantageous to copy a value into several banks so that it 
can be used by many functional units simultaneously. 

Obviously, operation placement, data routing, and 
register allocation are all interdependent. Compilers for 
existing horizontally-microcoded machines haven't  had to 
deal with these problems because the target architectures 
offer little choice: An operation can be done in only one 
or two functional units, there are only one or two paths 
between any two points in the machine, and a functional 
unit is serviced by only one or two register banks. 
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We've built two code generators for the Bulldog com- 
piler, one that uses a sophisticated strategy and one that 
uses a much simpler strategy but handles a more realistic 
range of machine models. The two code generators differ 
primarily in their approach to operator placement and 
register allocation. 

The code generators get a trace of basic blocks as input 
and produce parallel machine code as output, treating the 
trace as if it were one very large basic block. Like many 
traditional code generators, our code generators convert 
the intermediate operations into a directed acyclic graph. 
The nodes of the DAG represent operations, and there is 
an edge between two nodes if one node uses the value 
produced by the other. They then form a schedule  of 
machine instructions by traversing the nodes in some 
topological order, choosing machine operations for inter- 
mediate operators and filling the instructions of the 
schedule with the machine operations chosen. To prevent 
illegal code motions past jumps and to force undis- 
ambiguated memory references to be evaluated in the cor- 
rect order, new edges are introduced to prevent one node 
from being evaluated before another. 

T h e  O p e r a t i o n - S c h e d u l i n g  C o d e  G e n e r a t o r  
Of the two code generators, the operation scheduler [17] 

uses the more sophisticated strategy. Operation place- 
ment, data routing, and register allocation are all delayed 
as long as possible, and the decisions about a particular 
intermediate operation are not made until the very point 
when the operation is placed on the schedule of machine 
instructions. 

The parameterized machine model used by the current 
operation scheduler is limited in one important sense: 
Every functional unit has only a single feasible register 
bank to use for its result. This means that its register 
bank choices are in some cases fully constrained by the 
choice of functional units. But this is a restriction of the 
current implementation, not of the general technique. 

To generate code for a trace, the operation scheduler 
forms an expression DAG. It then enumerates the nodes 
of the DAG (operations) in a topological order, placing 
the operations on the schedule of machine instructions. 
As each operation is considered, the code generator 
chooses a functional unit, data paths to deliver the 
operands to the functional unit, and a register bank to 
hold the result, and it finds cycles on the schedule where 
these actions can be placed. 

To make these choices, the operation scheduler first cal- 
culates an earliest cycle that an operation could be 
scheduled based on the availability of operands. For each 
operand, a list is kept giving all the cycles and locations 
the operand is available. An operation can be started 
only after all the operands become available. (The reor- 
dering constraints of trace scheduling and disambiguation 
also affect the earliest cycle.) 

The operand availability lists are also used to compute 
a search list of likely functional units for an operation. 
Functional units closest to the operands are considered 
first, and distant units are considered last. That  is, the 
list is ordered by the longest data path of any operand to 
the functional unit. 

proc. SearchForBinding( operation ) 
m e r  cycle f r o m  EarliestCycle( operation ) do 

for each fu in FunctionalUnitSearchList( opera- 
tion ) do 

i f  fu is available at cycle and the operands 
can be fetched to fu's inputs by cycle 
and there is a register for the result at 
cycle 

then 
Schedule operation to take place in fu 
at cycle. 
Schedule the data movements for the 
operands and the result. 
return 

Figure 3: Algorithm for binding intermediate opera- 
tions 

proe FindDataPath( start-bank, end-bank, start-cycle, 
due-cycle ) 

if start-cycle :> due-cycle then 
return false 

if start-bank ---- end-bank then 
return true 

incr cycle from start-cycle to due-cycle do 
for next-bank in SP[ start-bank, end-bank ] do 

i f  the data-path from start-bank to next- 
bank is 
available in cycle 

then i f  FindDataPath( next-bank, end- 
bank, cycle + 1, 

due-cycle ) 
then 

return true 
return false 

Figure 4: Algorithm for finding data paths 

Figure 3 sketches the algorithm that binds intermediate 
operations to particular functional units, data paths, and 
register banks and schedules the machine operation. 

Starting with the earliest cycle an operation could be 
scheduled, each functional unit in the search list is con- 
sidered in turn. If the functional unit is not in use that 
cycle, if the operands can be moved to the inputs of the 
functional unit by that cycle, and if a register is available 
to hold the result, then the operation is scheduled on that 
functional unit in that cycle. Otherwise, the next cycle is 
considered, and the entire search process repeated. 

The dynamic method for finding data paths relies on a 
short-path table indexed by register banks. For every 
pair of register banks Ri and Rj, SIP[ Ri, Rj ] gives a list 
of register banks immediately adjacent to Ri that are on 
short paths from Ri to Rj. 

The search for a data path is performed by the recur- 
sire procedure shown in figure 4. FindDataPath  
returns true if it can find a path between register banks 
s t a r t - b a n k  and end-bank. The parameter start-cycle 
is the first cycle that the value in question is available in 
the starting register bank, and due-cycle is the last al- 
lowable cycle the value may be delivered to the ending 
register bank. To find a path between s t a r t - b a n k  and 
end-bank, the procedure looks for a path from start- 
bank to an adjacent register bank nex t -bank ;  if it finds 
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one, it then recursively looks for a path from n e x t - b a n k  
to end-bank .  

It's possible that the order in which operations are con- 
sidered may affect the parallelism of the machine code. 
In general, there are many topological orderings of a 
DAG, and the code generator must choose one. We've ex- 
perimented with several ordering heuristics, including 
height in the DAG (maximum distance to an exit) and es- 
timated execution counts. The preliminary results have 
been mixed; there haven't been great differences between 
the heuristics. 

T h e  L i s t - s c h e d u l i n g  C o d e  G e n e r a t o r  
The list-scheduling code generator [4] is the simpler of 

the two code generators. Only a sketch of the algorithm 
will be given here. 

The code generator uses a parameterized machine 
model capable of describing a large class of realistic VLIW 
architectures. The elements of the model are register 
banks, functional units (memory banks, adders, mul- 
tipliers, etc.), and the connections between them. Ar- 
bitrary topologies of elements can be constructed. A 
shortest-path table is computed from the machine descrip- 
tion giving ~he time delay and shortest path between any 
two elements. 

Specified for each register bank are the number of 
registers and the number of input and output ports. 
Specified for each functional unit are the operations im- 
plemented by that unit, the time delay of the operations, 
and how frequently pipelined operations can be initiated. 
Associated with every register bank and functional unit 
are sets of resources required to perform the operations of 
that element; similarly, every point-to-point connection 
between elements has an associated set of resources re- 
quired to move data across the connection. These 
resource sets let us describe conflicts due to hardware 
limitations, e.g. that only one of two buses may be used in 
any cycle, or that a memory bank can initiate at most 
two reads or writes every three cycles. 

Generating code for a trace consists of three main 
phases: representing the trace as a directed acyclic graph, 
functional unit assignment, and list scheduling. The as- 
signment phase picks functional units for each of the in- 
termediate operations, and the list-scheduling phase then 
enumerates the nodes in a topological order, packing them 
into machine instructions. 

The assignment phase is analogous to the register al- 
location of traditional compilers, and in fact was inspired 
by the top-down-greedy register-allocation algorithm [3]. 
Traditional register allocation tries to assign a limited set 
of registers to the operations of the DAG, minimizing the 
movement of data between registers and memory. 
Analogously, the assignment phase allocates functional 
units to intermediate operations, minimizing the costly 
movements of data between distant functional units. 

The assignment algorithm simplistically assumes that 
the functional units are the only limited resource and that 
there will never be any bus or register-port conflict when 
moving values between functional units. Using a reeur- 
sive procedure Assign, the code generator attempts to 
pick a good functional unit for each node (intermediate 
operation) in the DAG, making a guess as to which cycle 

fo r  each node with no successors (readers) do 
Assign( node, empty-set ) 

p r o c  Assign( node, estimated-destinations ) 
/* Assigns a functional unit to node. estimated- 

destinations is a guess as to tile set of functional 
units where the value produced by node might be 
used. */ 

if node is already assigned t h e n  
r e t u r n  

for  each  operand of node do 
Assign( opcrand, LikelyFUs( node, estimated- 
destinations ) ) 

Pick one of LikelyFUs( node, estimated-destinations ) 
and assign it to node. Estimate tile the earliest cycle 
in which it can be scheduled and record the func- 
tional unit as being busy during that cycle. 

p r o c  LikelyFUs( node, estimated-destinations ) 
/* Returns a set of functional units that could com- 

pute node and move its value to estimated- 
destinations as early as possible. */ 

Consider each functional unit capable of computing 
node. For each unit, estimate the earliest cycle that 
the values of the operands could be moved to the 
unit, the operation computed, and its value moved to 
the closest of estimated-destinations. Return the 
functional units having the earliest such cycles. 

F ig u re  5: The functional-unit assignment algorithm 

the operation will be scheduled. The measure of goodness 
of an assignment is how early the operation can be 
scheduled on the assigned functional unit and its 
produced value moved to the functional units of the 
operations reading the value. 

Assign, shown in figure 5, recursively propagates from 
the exits to the entrances of the DAG estimates of where 
an operation can be best computed. When it reaches the 
entrance nodes, it then works its way back to the exit 
nodes, making final assignments of functional units to 
operations. 

Once functional units have been assigned to operations 
of the DAG, the list-scheduling phase emits actual 
machine code by enumerating the nodes in a topological 
order and filling in the schedule of machine instructions. 
The instructions are formed in order: first cycle 0, then 
cycle 1, then cycle 2, etc. To form the next instruction, 
the list scheduler considers all nodes that are d a t a  
r eady ,  i.e. nodes all of whose predecessors have already 
been scheduled. It fills the instruction with as many of 
tile data-ready operations as possible using first-fit; when 
no more can be squeezed into the current instruction, it is 
emitted and a new instruction started. 

During assignment and list-scheduling the code gener- 
ator is often faced with a choice of several nodes. For ex- 
ample, at each step in list-scheduling there are many 
data-ready nodes, only some of which will fit into the cur- 
rent instruction. In such cases, the code generator orders 
tile nodes by height (maximum distance to an exit of the 
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DAG), on the assumption that the nodes of greatest 
height are the most time-critical and should take priority 

Tile destination register bank and register for a value 
produced by an operation are chosen on the fly when 
scheduling the operation. The list scheduler looks for an 
available register bank on the shortest path between the 
functional unit producing the value and the functional 
units that will be using the value. 

Data movements between distant register banks are 
also scheduled on the fly during list scheduling. As soon 
as a value-producing operation is scheduled, the list 
scheduler looks at all the operations reading the value. If 
any are more than one register bank away, the list 
scheduler inserts special copy nodes into the DAG be- 
tween the producing node and the distant reading nodes 
that will move the value to the distant functional units. 
These copy nodes will be scheduled just like normal 
operations, getting the values to the reading functional 
units as early as free hardware resources will allow. 

List scheduling Versus Operat ion Scheduling 
How do the two code generators compare? 

We haven't yet run extensive experiments, but prelimi- 
nary results indicate that on simple machine models there 
is little difference in the quality of the object code 
produced. Why little difference? It would seem that the 
exhaustive branch-and-bound search methods of the 
operation scheduler would surely do better than the 
simple heuristics of the list scheduler. But the operation 
scheduler offers only a simplified machine model with few 
interdependencies; the critical resource in the model ap- 
pears to be functional units, not data paths or register 
bank-access. Since the list scheduler assumes that the 
only critical resources are functional units, it's not surpris- 
ing that there is no difference between the two code 
generators on the simplified model. 

It's likely that with complicated machine models having 
limited data paths and complex topologies, an operation 
scheduler would generate better code than the list 
scheduler. But expanding the branch-and-bound search of 
the operation scheduler to efficiently handle more realistic 
machine models might make the operation scheduler more 
complicated. 

As for compilation time, right now the list scheduler is 
slightly faster. Both code generators take time linearly 
proportional to the size of the input trace. But the list 
scheduler time is linearly proportional to the size of the 
machine model, whereas the branch-and-bound search of 
operation scheduling takes time exponentially propor- 
tional to the complexity of the machine model. We're not 
sure how severely this exponential factor might slow down 
operation scheduling with complex machine models. 

The complexity of the implementations are roughly 
comparable (about 7000 lines of code), always an impor- 
tant consideration for practical compilers. Again, the 
operation scheduler might become significantly more com- 
plicated when it is expanded to handle more realistic 
machine models. 

Looking ahead, perhaps a combination of the two code 
generators might provide the best solution. The func- 
tional unit assignment algorithm of the list scheduler 

could be used to heuristically guide the branch-and-bound 
search of the operation scheduler. 

P r e l i m i n a r y  R e s u l t s  
We're currently running extensive experiments measur- 

ing the performance of our compiler. As test data we're 
collecting a quite respectable library of scientific Fortran 
routines. We're running all of the routines through the 
compiler and measuring their performance on four 
machine models. 

The ideal machine has infinite resources: infinite 
registers and functional units, no communications penalty, 
and l-cycle operations. Performance of the ideal machine 
shows how much parallelism trace scheduling and dis- 
ambiguation can find; parallelism is measured by taking 
the ratio of sequential operations to ideal machine instruc- 
tions. 

The s imple  ELI,  used by both the operation- 
scheduling and the list-scheduling code generators, is an 8- 
cluster machine similar to figure 1, each cluster having 4 
functional units connected by a complete crossbar to a 
multi-ported register bank. The simple ELI is more 
realistic than the ideal machine, but is still impractical. 

The rea l is t ic  ELI  is an 8-cluster machine, each cluster 
having partial crossbars and multiple, practically ported 
register banks. It is very close to the actual ELI currently 
being designed. Only the list scheduler can generate code 
for the realistic ELI. 

The pipelined-sequential machine is a traditional 
machine "built with the same technology" as the realistic 
ELI. But it has one cluster for which only one pipelined 
operation can be initiated every cycle, and the register 
bank allows only 2 reads and 1 write every cycle. This 
model resembles a CDC 6600 or the scalar portion of the 
Cray. 

Comparing the simple and realistic ELI models with the 
pipelined-sequential model will tell us how much of the 
extra parallelism offered by the ELI models is actually 
being used by the compiler. 

Our library currently consists of: 
Simple matrix operations (multiply, transpose, add, 

reduce) 
Generating prime numbers 
Convolution 
FFT 
LU decomposition 
Tridiagonal solvers (3 versions) 
Quicksort 
LINPAK inner loops (LINPAK is a widely used 

Fortran package for solving linear systems) 
Soon we'll be adding the following routines taken from 
Forsythe, Malcom, and Moler [8]: 

Spline interpolation 
Integration using adaptive quadrature 
Initial value ODE. RKF45 
Solving non-linear equations 
One-dimensional optimization 
Singular value decomposition 

Complete results for running all of these programs on 
all four models will be presented at the conference and in 
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the theses soon to appear [4, 17]. We've compiled all of 
the first group for the ideal machine and a few for the 
simple ELI and the realistic ELI. 

So far we've only had time to analyze Fast Fourier 
Transform in any depth. On the ideal machine, we've got 
a speedup of 47 (that's the ratio of sequential ideal in- 
structions to parallel ideal instruetions). On the simple 8- 
cluster EL1 we've got a speedup of 7.5 (the ratio of 
pipelined-sequential instructions to simple ELI 
instructions). The input vector size was 512. 

Of the other programs, we've run many of them 
through the compiler and generated correct code, but we 
haven't analyzed and tuned them yet for performance 
(disambiguating memory references, unrolling and reor- 
ganizing loops for maximum parallelism, etc.). However, 
their performance on the ideal machine shows how much 
parallelism the trace scheduling and disambiguation are 
finding. From the results shown in figure 6 you can see 
that the Bulldog compiler is finding quite a bit of paral- 
lelism in ordinary scientific code. We're confident that on 
most of the routines we'll get realistic ELI performance 
similar to FFT's performance. 

Program Speedup 
FFT 47 
Tridiagonal solver 9 
LU decomposition 12 
LINPAK inner loops 11 
Prime number generation 13 
Matrix multiply 25* 
Convolution 25* 

*The parallelism found by the compiler in these 
simple programs is limited only by the size of 
the input data. 

Figure 6" Ideal machine speedup (sequential 
instructions/parallel instructions) 

Previous W o r k  
Early parallelism experiments [9, 10] indicated that 

there was very little available parallelism in ordinary 
programs. The pessimism of those experiments combined 
with the difficulty of hand-coding VLIWs focused research 
on multiprocessors, vector machines, and data flow 
machines and away from VLIWs. 

Data flow machines are still a gleam in the researcher's 
eye. Maybe they'll eventually provide thousand-fold 
parallelism, but there are still too many unsolved 
problems. Meanwhile, the ELI project has demonstrated 
a practical hardware and software architecture that offers 
mere ten-fold speedups right now. 

There has been little sueeess in compiling programs for 
multiprocessors. For example, the Cm* project [11] was 
hamstrung by the difficulty in distributing programs 
among the multiple processors. 

The major effort in automated code production for vec- 
tor machines and multiprocessors was undertaken at the 
University of Illinois. Kuck and his group developed a 
system, Parafrase, whose main goal is to generate code for 
fast, highly parallel machines [16]. Parafrase relies on ex- 

tensive global data-dependence analysis and no global 
flow information. A memory-reference disambiguation 
mechanism eliminates superfluous dependency edges in 
the data-dependency graph due to ambiguous array 
references [2]. Using a large library of source transfor- 
mations, Parafrase attempts to fit the available paral- 
lelism to the target architecture. Because the architec- 
tures cannot use fine-grained, operation-level parallelism, 
the disambiguator and the transformations operate at a 
coarse, all-or-nothing level, ignoring anything that cannot 
fit the mold. As a result, Parafrase ignores large amounts 
of parallelism existing in ordinary programs. 

Many of the ideas of our project were originally 
motivated by the research on the compilation of high level 
languages into horizontal microcode. Fisher's thesis intro- 
duced the concept of trace scheduling and discussed 
heuristics for using list scheduling to generate horizontal 
microcode from vertical microeode [5]. Sites used list 
scheduling to optimize the code for the scalar, pipelined 
portion of the Cray [18]. Since then there have been 
many papers about variants on trace scheduling and other 
techniques attempting translation into horizontal 
microcode [12, 13]. 

Our research significantly differs from this microcode 
research. First, the VLIW architectures we've been 
studying are not horizontally-microcoded machines they 
are reduced-instruction-set processors that hide the 
detailed complexity and asymmetry of mierocode, while 
offering many times the architectural parallelism of cur- 
rent mierocoded machines. Second, most of the 
microcode compilation techniques generate vertical 
microcode with registers, functional units, and data paths 
already assigned; then they try to compact the vertical 
code into horizontal code, perhaps reassigning registers 
and functional units in the process [10]. Finally, most of 
the microcode research is paper research with very few 
people actually building real compilers. 
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