
MANAGING POLYA TOMIC COHERENCE AND RACES
WITH REPLICATED SHARED MEMORY

H. G. Dietz and T. I. Mattox

Purdue University, School of Electrical and Computer Engineering
West Lafayette, IN 47907-1285

{ hankd , tmattox } @ecn.purdue.edu
http://garage.ecn.purdue.edu/˜papers/

Although many parallel computing systems allow
processors to communicate with each other by loading and
storing objects in an apparently shared memory, there is little
agreement on the precise semantics of shared memory object
access. However, if compatibility with the semantics of
common high-level languages is the primary motivation for
favoring a shared memory model, then it is critical that the
behavior of the shared memory mechanism be consistent with
this programming model.

Common shared memory implementations place all
shared objects within a single physically shared memory system
(e.g., shared bus), scatter shared objects across processor-local
memories to implement a “distributed shared memory” (DSM)
managed either by software or by cache coherence hardware, or
“reflect” each memory write to the local memory of all
processors. Instead, we propose a “replicated shared memory”
(RSM) model which uses local memory much like reflective
memory systems, but employs a more sophisticated update
mechanism that yields the desired semantics.

1. Introduction

Despite the fact that machines supporting some flavor of
shared memory parallelism are relatively common (e.g.,
products from Sequent, SGI, Cray and numerous SMP PCs),
and many shared memory programming models have been
proposed, there is no standard definition of shared memory. For
the purpose of this paper, we suggest that shared memory is
characterized by four fundamental properties:

1. The ability to transmit data between processors by use of an
apparently conventional high-level language assignment
statement storing into a variable that has the “shared”
attribute or storage class.

2. If one or more processors load the value of a shared
variable, the value loaded should be the same on all
processors, and should be equal to the value most recently
stored into that variable by any processor. This implies that
races are resolved in a way thatis consistent witha
sequential store order. A discussion of how many systems
approach this issue is [1].

3. No matter what size objects are placed in shared memory,
all object accesses occur atomically without interference
from adjacent object accesses. We call a system with this
attribute “polyatomic.”

4. Shared memory accesses can be made asynchronously by
each processor independent of the others.

Of these, most traditional hardware and software methods for
implementing shared memory can achieve 1 and 4. However,
properties 2 and 3 remain elusive. Property 2 refers to the basic
concept of coherence, which is often redefined in looser terms
to permit more efficient implementation. Arbitrary-size
polyatomic access, property 3, is generally viewed as
incompatible with the fixed-width data paths used by hardware,
and is often sacrificed with the silent assumption that only
word-sized values are important (e.g., see [1]).

In contrast, the scheme presented in this paper makes no
compromises on 1, 2, and 3, but sacrifices some degree of the
asynchrony described in 4. While each processor is free to
initiate a read from or write into shared memory at any time, a
write generally will not complete until all processors have
synchronized. This different approach enables very simple
hardware to implement a model that is fully consistent with
traditional programming language semantics, yet yields good
performance.

The prototype hardware support for this semi-
synchronous shared memory is TTL_PAPERS [5], the TTL
implementation of Purdue’s Adapter for Parallel Execution and
Rapid Synchronization. This inexpensive hardware does not
directly implement shared memory access, but was designed to
provide very low latency barrier synchronization and aggregate
communication operations to user-levelUNIX processes running
on a cluster of personal computers or workstations. It differs
from the ideal hardware support mechanism primarily in the
way it is physically connected to the processors; prototype
performance is relatively low, but is sufficient both to
demonstrate the approach and to accurately predict performance
of an “IDEAL” bitwise aggregate network [5].

2. The Shared Memory Model

Before describing the implementation of the shared
memory system, it is useful to define the details of the shared
memory model and constraints on how the system can be used.

2.1. Data Format Constraints

From the perspective of high-level language code,
“shared” is not an attribute of memory per se, but of specific
data objects. For example, declaringshared<int> i;
creates a (32-bit) signed integer variable (data object) whose
value is to be maintained as a coherent copy on each of the
processors.

Clearly, if all machines within a cluster use compatible
processors, all of these copies are literally identical memory



images. However, if heterogeneous computers are used to form
a cluster, each machine may use a different native
representation for objects of a specific type. Continuing the
above example, a 32-bit signed integer object may have a
different native byte order for each different type of machine
within a cluster (e.g., “big endian” versus “little endian”).
Thus, to make a native-format copy of a shared object’s value,
the shared memory system must not only transmit the new value
whenever the object is written, but also perform a data type
dependent translation to the native format of each machine. For
example, the VMIC “reflective memory network” [9]
implements endian conversion in hardware.

In theory, incorporating type-dependent object format
translation is relatively simple. Unfortunately, typed objects in
most high-level languages have programmer-visible memory
format dependencies that make the appropriate translation
difficult or impossible to create. FortranCOMMONandEQUIV
declarations permit different typed objects to access the same
memory image (i.e., different typed objects can overlap each
other in memory). Still more complex, the C language allows
different-typed objects to overlay each other in memory using
eitherunion types or type coercion (e.g., using achar pointer
to access bytes within anint ). These type-aliasing constructs
would expose the fact that different machines used different
native layouts.

Thus, unless shared objects are restricted to be free of
type-aliases, the copy-based shared memory model is
effectively restricted to use on clusters in whichall processors
use identical native data formats.

2.2. Object Atomicity

Most shared memory programming models define all data
object accesses to be atomic; any datum from a character to a
double-precision floating-point number, or even an entire user-
defined structure (in languages like C), is able to be loaded or
stored with the assurance that the entire object is treated as a
single entity. Unfortunately, it is very difficult to create a
hardware/software system that efficiently provides this property.
Because hardware generally transfers data in fixed-length units,
there are really two separate types of atomicity violation to be
considered.

The first case typically occurs when the datum being
accessed is smaller than the unit of transfer; this case is often
referred to as the “false sharing” problem. For example,
operations on adjacent characters within a single word should
be able to proceed in parallel. Thus, given a shared character
arrayc[2] initialized to "cc" , executingc[0]=’a’ on one
processor while another executesc[1]=’b’ should always
result in "ab" . Most shared memory systems implement
character store as a sequence of word fetch, byte insert, and
word store, which can produce"ac" or "cb" , violating
character atomicity.

The second type of atomicity failure typically occurs
when the datum is larger than the unit of transfer; this problem
is equally important, but often ignored. We will call this a
“fragmentation” problem, since the incorrect results are caused
by the handling of fragments of the object as separate entities.
For example, if two processors attempt to store different 64-bit

double-precision floating point values into the same variable,
but memory access is accomplished atomically only on 32-bit
words, it is possible that the stores could interleave such that the
64-bit result has the first 32 bits from one value and the last 32
bits from the other.

Ironically, in some systems, it is even possible for a single
object reference to cause both types of atomicity failure. For
example, consider storing a 32-bit value into a memory address
that is not aligned on a 32-bit word boundary. Although such
misaligned access is simply disallowed on many machines,
processors like the Intel Pentium allow these accesses and
implement them using a pair of word operations. Thus, only a
fraction of each memory word is modified by the store,
potentially yielding a false sharing atomicity failure. However,
at the same time, the fact that two memory word accesses are
required can cause a fragmentation atomicity failure. The same
dual problem can occur when spanning page boundaries in a
page-oriented shared memory system.

Neither of the above two types of atomicity failures is
acceptable, thus, the model used in this paper ensures thatev ery
shared object access is atomic. In fact, shared memory
references that would cause atomicity problems for other
systems perform very well with RSM because they tend to
reduce the overhead of transmitting the object addresses
(TTL_PAPERS RSM uses software caching of addresses).
Reference atomicity is completely unaffected by object size; an
atomic object can be as small as one byte or as large as the
entire virtual address space.

2.3. Addressing

Because shared objects can partially overlap, and shared
objects can be pointers, it is very difficult to manage shared
objects without causing each object to have the same logical
memory address in all machines. Nearly all modern computers
use address page table hardware to map the physical addresses
used by a program into a standard logical address map. It is
sufficient to ensure that each shared object has the same
position in the logical address map for each machine.

If the exact same executable image is executed on all
processors, all statically allocated data will naturally have
identical logical addresses for all processors. Notice, however,
that even details such as order of code modules being linked to
create the executable image can result in static data being given
a different layout. Further, even if all processors perform
identical function calls declaring identical local variables, it is
common that small differences in the execution environment
(e.g., UNIX environment variable values) result in potentially
different addresses for stack-allocated objects. Thus, local
stack-allocated variables cannot be shared.

A more general alternative is to use aUNIX system call to
dynamically allocate objects at specific logical (virtual) memory
locations. Usingmmap() or shmat() , a chunk of memory
can be allocated at the same logical addresses across the cluster
despite differences between the code images on different
processors, i.e., fully-general MIMD as opposed to SPMD.



2.4. Asynchronous Update

Arbitrary asynchronous access should be allowed for all
shared variables; it is this aspect of the idealized shared memory
system that we will compromise for improved efficiency.

In most applications, the expected number of read
accesses is greater than the expected number of write accesses.
Thus, we prefer to make reads more efficient at the expense of
writes — which is precisely the opposite of the cost relationship
obtained from most DSM systems. The most efficient read
access results from making the effect of every write
immediately visible to all processors (write-thru). This makes
ev ery read a simple local access without any communication
overhead and, because local actions are fully asynchronous,
reads are truly asynchronous.

The remaining problem is how to implement the
equivalent of a write-thru broadcast on every store into a shared
object, yet obtain reasonable efficiency. Conventional
workstation network hardware is not efficient with the very
small message sizes implied by object write-thru; these
networks are designed to optimize bandwidth, not latency. For
example, the combination of Orca and Amoeba using Ethernet
to implement reliable broadcast yields a peak performance of
about 1,250 microseconds per broadcast [8]. Reflective
memory systems, such as [9] and [6], use custom hardware
optimized for low-latency broadcasts. For example, [9] quotes
a memory reflect time of just 2.1 microseconds for four
machines; however, the hardware is expensive, larger systems
are at least linearly slower, and the transfers are word-oriented
(i.e., not polyatomic).

In contrast, our approach uses hardware that is essentially
a group of synchronously-sampled NAND trees across the
processors. The NAND trees efficiently support low-latency
broadcast by having the sending processor output the
complement of its datum while all other processors output all 1
bits. However, these NAND trees also provide very fast barrier
synchronization and a powerful mechanism for voting on shared
memory updates so that the amount of data to be transmitted
can be minimized. A four-bit-wide version of these NAND
trees, and supporting circuitry, is the TTL_PAPERS hardware
[5] which we will target for the detailed discussion in this paper.
Using TTL_PAPERS, a typical optimized shared object write
can complete in about20 microseconds, makingall processors
aw are of the new value.

But how can “synchronously-sampled NAND trees”
implement anasynchronousbroadcast? The solution is to use
the TTL_PAPERS hardware’s asynchronous signaling facility
(a “eureka” [4]) to trigger the synchronous cooperation of all
processors to effect any pending shared memory writes.
Hardware interrupt overhead is too high in comparison to
communication latency, thus, processors not writing to shared
objectsmust occasionally poll to see if other processors are
signaling that they hav e a write-thru broadcast pending. Any
asynchronously initiated attempt to write into a shared object
blocks until all processors have also either made write requests
or polled.

With a simple C++ library, reading or writing a shared
object automatically polls. However, if a processor will not be
accessing any shared objects while other processors might be

writing shared objects, it may be necessary to manually insert
explicit calls to the polling code. The worst-case delay can be
bounded by setting aUNIX timer to run a polling signal
handler... but this may damage the atomicity of the system if
one is not careful to ensure that theUNIX signal doesn’t interrupt
a shared memory write already in progress.

3. TTL_PAPERS RSM Support

RSM has been implemented for clusters of PCs running
Linux and communicating using the TTL_PAPERS aggregate
function network [5]. The TTL_PAPERS hardware implements
very low latency barrier synchronization, 4-bit wide data
communication, and asynchronous parallel signaling. The
barrier synchronization logic consists of two NAND trees and a
flip-flop, as does the asynchronous parallel signaling logic. The
4-bit wide communication mechanism is simply four separate
NAND trees. The result is very simple hardware that scales as
well as NAND trees. The four-processor 960801 version,
which also serves as a module to connect up to thousands of
processors in a 4-ary tree, is shown in the above photo.

At this writing, we have built eleven different types of
PAPERS units, and there are improvements in each generation.
Space limitations do not permit us to include circuit diagrams,
etc., but full hardware and software documentation for the
public domain designs is available online at:

http://garage.ecn.purdue.edu/˜papers/

TTL_PAPERS connects to each processor (each PC or
workstation) using a standard parallel port (SPP) connection,
which is accessed directly from the user process using either
memory-mapping or I/O instructions to input from or output to
hardware port registers. Although port register accesses do not
suffer OS call overhead, each access takes between one and two
microseconds, which is far longer than the combined software,
cable, and communication logic delays. Thus, counting port
register accesses gives a good measure of the cost of each
operation.

It is also easy to predict the execution time on idealized
hardware (henceforth called “IDEAL”) by simply counting the
number of 32-bit wide references that would be needed for a
TTL_PAPERS-like structure connected directly to the I/O pins
of a processor. Counting only the delay within the aggregate
function unit (primarily a NAND gate), each operation takes
about 25ns for a four-processor system, and 25*log4(n) for n



processors. Thus, an IDEAL operation might complete faster
than a local memory DRAM access... which makes sense
because IDEAL’s logic is simpler than that of a DRAM.

3.1. p_bcastPutz/Getz(addr, size)

These two routines are used to perform a synchronous
broadcast of an arbitrary size block of memory. The single
sending processor callsp_bcastPutz(addr, size) and
all receiving processors must callp_bcastGetz(addr,
size) with the same size value. Although the
TTL_PAPERS data path is only 4 bits wide, these routines use a
history-based compression technique that typically requires
only one 4-bit transmission for every 8 bits of data. Each such
4-bit transmission with TTL_PAPERS is currently implemented
by 5 port register accesses. There are also broadcast put and get
routines for transmitting a single object of any basic data type
(as defined by the Gnu C Compiler), and these routines are
actually slightly more efficient; for example, 32-bit integer
objects are transmitted using a type-dependent compression
scheme that typically requires only three 4-bit transmissions
rather than the four required using the generic compressed
block broadcast scheme. The result is that a typical compressed
32-bit integer broadcast can take as little as 15 to 30
microseconds. Using IDEAL, a 32-bit broadcast would take
about two operations.

3.2. s_update(addr, size)

The s_update(addr, size) function is essentially
the asynchronous equivalent to the synchronous
p_bcastPutz(addr, size) and
p_bcastGetz(addr, size) . A processor attempting to
write a data object to shared memory calls this function with the
obvious arguments: the virtual base address of the data object
and the object size in bytes. Thus, the purpose of this call is to
make the copies of the object in other processor memories
consistent with the local copy which has already been updated.

The first action taken is to signal that one or more shared
memory requests are pending, which is done by setting a signal
and waiting for all processors to arrive at a barrier
synchronization confirming that they hav e seen the signal. This
takes as few as two port register accesses.

After the barrier synchronization, all processors
determine which processors have actual shared data writes to be
performed. The simplest description of the set of writers is a bit
mask in which biti is a 1iff processori has data to write. The
collection of this mask using the TTL_PAPERS hardware
requires no more than five port register accesses for every four
processors in the cluster... or one operation for every 32
processors using IDEAL. Each processor simply outputs all 1
bits, except for the bit that it uses to indicate whether it had a
datum to write. Since all processors obtain the same bit mask
from the NAND logic, all now agree on which processors need
to write, and the ordering of the actual write operations can be
statically scheduled (e.g., using “round robin” ordering) without
additional communication overhead.

As each writer is selected, it broadcasts an encoded form
of the object address, size, and new data to all the other
processors. For TTL_PAPERS, the SPP connection and 4-bit

data path make compression worthwhile; predictions about the
properties of typical writes and experiments with various
application-specific encoding methods were used to determine
the best compression scheme. However, the most important
compression technique used is thedetection of race conditions.
When a processor that has not yet sent its store observes an
overlapping store being broadcast, it appropriately adjusts its
store to treat the earlier store as the winner of the race. Thus, if
k processors are attempting to store values in the exact same
object, only the first will broadcast; the other processors will
simply withdraw their requests, allowing the first sender to win
the race.

If only one processor has a write pending and we assume
only 8:4 compression can be achieved on the data broadcast,
typical cost for the complete TTL_PAPERS asynchronous
broadcast store can be as low as 14+5*ceil(N/4)+5*k port
register accesses, whereN is the number of processors andk is
the number of data bytes in the object. For a 32-bit object and
eight processors, this is 44 port register accesses or between 44
and 88 microseconds. Using eight (very slow) 386DX 33 MHz
PCs running Linux, the typical time was measured to be about
60 microseconds. Put another way, this is over 16,000 RSM
writes per second, or more than 20 times as fast as the
mechanism used in [8]. Of course, adding more processors or
sending more or more random (less compressible) data both
slightly extend the broadcast time. Similarly, having more than
one processor requesting a write simultaneously reduces the
time per write, very significantly if races are present.

The IDEAL hardware could take as few as three
operations to transmit data. Of course, the write-ordering and
race-detection voting procedure should be implemented in
IDEAL’s hardware rather than in software.

3.3. s_poll()

OS context switch, and even basic hardware interrupt
latency, is much longer than the typical cost of a TTL_PAPERS
operation. Thus, only polling offers appropriately low latency
for responding to asynchronous write broadcast requests. The
TTL_PAPERS hardware must be polled to check for a parallel
signal indicating that one or more shared write requests are
pending. Polling costs just one port register access for
TTL_PAPERS: typically one or two microseconds. It would
also take only one IDEAL operation.

3.4. s_wait()

Thes_wait() operation is an asynchronous request for
a simple barrier synchronization. However, it is not sufficient to
just perform a barrier synchronization using the hardware of
TTL_PAPERS (or of IDEAL) because an asynchronously
triggered barrier synchronization also implies that all
asynchronous operations submitted by any processor complete
before the barrier executes. This is done by having processors
at a barrier poll for pending asynchronous events (updates) until
all processors have arrived at the barrier. If no shared writes are
pending, performance measured on the eight 386DX33 PC
TTL_PAPERS cluster averaged about 10 microseconds. For
IDEAL, this could be a single operation.



4. Basic RSM Compiler Technology

Our goal is to directly support polyatomic shared object
access. Only the programmer and compiler know the type and
size of each shared object being referenced, so one or the other
must mark each shared object access appropriately. It is critical
that eachaccessbe labeled; the sameaddressmay be associated
both with a Cstruct and with the first member of that
struct — nested objects requiring different atomicity. Thus,
object address marking schemes like those used for DSM page
tables [2][7] or reflective memory [6][9] are not sufficient.

For basic object references, it is more convenient that the
compiler tag each access rather than requiring the programmer
to do so. Section 4.1 describes how an ordinary C++ compiler
can implement this tagging. Higher-level synchronization
operations are more often specified by the programmer; Section
4.2 describes the appropriate interface.

4.1. Shared Object Templates

The “trick” that allows us to use an ordinary C++
compiler, rather than writing a custom compiler like Orca [8], is
the C++ template mechanism. Our C++ shared object templates
store each data object as a protected, volatile, object of the
actual (base) type specified. A write operation to a shared
object is implemented by the template’s definition of the
assignment operator specified. Perhaps less obvious is the fact
that all read operations can also cause arbitrary code to be
executed by simply defining a type cast operation that converts
a shared < actualT> object into anactualTvalue. The basic
(simplified) template structure is:

template<class actualT>
class shared {
public:

actualT operator=(actualT rhs);
actualT operator=(shared<actualT> rhs);
operator actualT();

protected:
volatile actualT data_;

}; /* shared */

Notice that the shared object hasexactly the same memory
image as an object of the actual type; there is no additional
structure in memory. This is vital to our model, since the
specification of overlapping shared memory objects (e.g., a
sharedunion ) should result in the same overlap that equivalent
non-shared objects would have evidenced.

Clearly, correct execution may require every shared
object write to cause an asynchronous shared object write
request. The problem with intercepting only shared object
writes is that a process which is simply looping until the local
value of a shared object changes would never respond to the
shared object write signal sent by another processor attempting
to alter that value. Thus, the loop would be endless, resulting in
a strange type of deadlock.

The solution is, of course, to ensure thats_poll() is
called at least occasionally by all processors, but precisely when
should polling occur? The easiest deadlock-avoiding solution is
to simply cause each shared object read to first poll for pending
shared write request signals. This is done by:

template<class actualT> inline
shared<actualT>::operator actualT() {

/* poll for pending write requests */
s_poll();
return data_;

} /* actualT */

A write into a shared object is also easily implemented.
However, the following code is complicated by a simple
optimization that is used only for objects with actual types that
define a comparison for equality operation (e.g., notstruct
nor union ). If a write to a shared object does not change the
value of the object, i.e., the value written matches the current
value, there is no need for a communication. In this case, the
code simply polls as it would have for a read.

template<class actualT> actualT
shared<actualT>::operator= (actualT rhs) {

register actualT temp_data_ = rhs;
if (temp_data_ != data_) {

/* write locally and update all */
data_ = temp_data;
s_update(((void*)&data_),sizeof(data_));

} else {
/* poll for pending write requests */
s_poll();

}
return data_;

}

Given the above, any basic or derived type can have a shared
equivalent, and the C++ compiler’s type tracking will cause the
correct code to be generated for each reference. For example:

anytype a, b; shared< anytype> c;
a = b; /* local */
a = c; /* polls */
c = a; /* updates (if needed...) */

The fundamental point about the above constructs is that
shared objectshave identical access semanticsto ordinary
objects. Many users would claim that this is the whole point of
having a shared memory system for parallel processing.

4.2. Synchronization Functions

Because this RSM system is built using barrier
synchronization hardware, it is not surprising that the
programmer has access to a very efficient barrier
synchronization mechanism,s_wait() , which can be called
directly in the user C++ code. In addition, we provide a simple
shared memory lock mechanism.

In most shared memory systems, the implementation of
locks and other types of semaphores depends on the use of
special atomic operations. However, the RSM mechanism
which we propose actually provides a stronger type of atomicity
for all references without any additional overhead.

A shared memory lock is declared as a variable of type
s_lock . Each such lock is actually a shared memory object
whose value is an integer between 0 andN for an N-processor
system. An open lock is represented by the value



S_INITLOCK (literally, 0). A lock held by processori has the
value i+1 . The three basic operations on locks are defined in
the following subsections.

4.2.1. s_initLock(lock)

To initialize a lock, the lock should simply be set to
S_INITLOCK on all processors. This can be done either by
statically initializing the value or by calling
s_initLock(lock) . The call simply sets the local value to
S_INITLOCK and then uses s_update(lock,
sizeof(*lock)) to update the copies in all processors.

4.2.2. s_acquire(lock)

This function is used to wait for and acquire the specified
lock. The procedure is remarkably simple:

• While the local copy of the lock variable is not
S_INITLOCK , call s_poll() to give the processor that
currently holds the lock a chance to release it. Notice that
there are no port register accesses required to test the local
lock value, and only one access is required for each polling
operation.

• Since the lock is now open, attempt to claim it by writing the
processor number plus one into the lock and calling
s_update(((void *) lock), sizeof(*lock)) .
Because other processors can only change the values of
shared objects by performings_update() operations in
which all processors participate, and these operations are
performed atomically by selecting a winner for each race, the
result of this step must always be that the winning processor’s
value appears in all copies of the lock.

• If the local copy of the lock now holds this processor’s value,
this processor has been granted the lock and can return from
s_acquire() . If it instead holds the value from a different
processor, the lock acquisition process continues with step 1.

The reason that this simple procedure works for our shared
memory model is that, unlike other types of shared memory, it
is impossible for the value of a lock to change without this
processor callings_poll() or s_update() .

4.2.3. s_release(lock)

To release a lock, the processor which currently holds the
lock must set all copies of the lock object toS_INITLOCK . In
other words, s_release(lock) is equivalent to
s_initLock(lock) . The only possibly desirable difference
would be to prefix the operation by checking that the processor
attempting to unlock currently holds that lock.

5. Conclusion

DSM systems like Ivy [7] and Treadmarks [2] use page
table hardware to invoke DSM communications, with a variety
of consistency models and message protocols. Using ATM
network hardware and low-level AAL3/4 protocols, Treadmarks
can satisfy a page miss access in 2,792 microseconds [2]. In
contrast, Locust [3] integrates scheduling with an active
message mechanism, yielding a DSM “fetch” time of 830
microseconds for a 4-byte object using 10 Mbits/s Ethernet.
Yet, even with these slow numbers, the result was shared

memory semantics that require great care in data layout and
significantly unconventional access semantics.

Reflective memory systems like [6][9] offer a more
natural semantics with little concern for data layout, and shared
write speed of a few microseconds, through the use of
optimized hardware. However, current designs do not offer as
strong a consistency model as presented in this paper, are
strictly word-oriented (i.e., not polyatomic), and add latency
quickly as larger systems are constructed. Further, they offer no
potential to optimizeacrosssimultaneous write operations...n-
way write races yield the worst case performance.

In contrast, the RSM (replicated shared memory) model
presented here provides the precisely the semantics desired,
including arbitrary polyatomic references. It also trivially
optimizes across simultaneous write operations, resolvingk-
way races in near constant time. Using just the SPP-connected
TTL_PAPERS, the RSM model easily achieves typical shared
object write execution times of well under 100 microseconds.
This performance is achievedwithout customized compiler
technology, literally using a standard C++ compiler with a
special template library. Incorporating more sophisticated
compiler technology, typical shared write times under 25
microseconds would be commonly observed. Using an IDEAL
implementation, typical write times could rival those of local
DRAM memory.

References

1. S. V. Adve and K. Gharachorloo, “Shared Memory
Consistency Models: A Tutorial,” IEEE Computer,
December 1996, pp. 66-76.

2. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R.
Rajamony, W. Yu, and W. Zwaenpoel, “Treadmarks: Shared
Memory Computing on Networks of Workstations,”IEEE
Computer, February 1996, pp. 18-28.

3. T. Chiueh and M. Verma, “A Compiler-Directed Distributed
Shared Memory System,” Supercomputing, December 1995.

4. Cray T3D System Architecture Overview, Publication
HR-04033, Cray Research, Inc., 2360 Pilot Knob Road,
Mendota Heights, MN 55120, 1993.

5. R. Hoare, H. Dietz, T. Mattox, and S. Kim, “Bitwise
Aggregate Networks,” Proceedings of theEighth IEEE
Symposium on Parallel and Distributed Processing, October
1996, pp. 306-313.

6. PCI Reflective Memoryliterature, Encore Computer
Corporation, Fort Lauderdale, FL, 1997.
(http://www.encore.com/ )

7. K. Li, “IVY: A Shared Virtual Memory System For Parallel
Computing,” 1988 International Conference on Parallel
Processing, August 1988, Vol. 2, pp. 94-101.

8. A. S. Tanenbaum, M. F. Kaashoek, and H. E. Bal, “Parallel
Programming using Shared Objects and Broadcasting,”
IEEE Computer, August 1992, Vol. 25, No. 8, pp. 10-19.

9. Reflective Memory White Paper, VME Microsystems Inter-
national Corporation, Huntsville, AL, Feb. 1996.
(http://www.vmic.com/ )


