Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

7-1-1992

Coding Multiway Branches Using Customized
Hash functions

H. G. Dietz
Purdue University, School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Dietz, H. G., "Coding Multiway Branches Using Customized Hash functions" (1992). ECE Technical Reports. Paper 308.
http://docs.lib.purdue.edu/ecetr/308

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F308&utm_medium=PDF&utm_campaign=PDFCoverPages

CODING MULTIWAY BRANCHES
UsING CustomizED HASH
FUNCTIONS

H. G. DiETZ

TR-EE 92-31
JuLY 1992

<
<5 PURDUE UNIVERSITY

5" WEST LAFAYETTE, INDIANA 47907-1285

e g
f" . SCHOOL OF ELECTRICAL ENGINEERING

Coding Multiway Branches
Using Customized Hash Functions'

H.G. Dietz

School of Electrical Engineering
Purdue University
West Lafayette, IN 47906
hankd@cn. pur due. edu

Abstract

In most modem languages, there is a congtruct that alows the programmer to directly
represent a multiway branch based on the value of an expression. InPascd, itisthe case State-
ment; in C, itisthe swi t ch and in Fortran-90the SELECT. However, it is quite common that
the efficiency of these congtructs is far worse than one might reasonably expect. This paper
discussesthe congtruction and use of customized hash functions to consistently improve execu-
tion speed and reduce memory usage for such constructs, Performance results are given, includ-
ing some that lead to the suggestion that adding a population count instruction to the ingtruction
set of aprocessor will greatly improve its hashing performance.

Keywords. multiway branches, hashing, compiler design, Pasca, C, Fortran-90, population
count.

¥ This work was supported in part by the Office of Naval Research (ONR) under grant number
N00014-91-J-4013 and by the Nationd Science Foundation (NSF) under Parallel Infrastructure
Grant number CDA-9015696.

Page1

Multiway Branches

1. Introduction

Before discussing how compilers might code multiway branches, it is useful to review the
constructs asthey are defined in current high-level languages. In particular, we will consder the
multiway branch constructsof Pascal [JeW75], C [KeR78] [ANS90], and Fortran-90 [ANS89].
As a simple example, we W consider code that selects and executes one of four subroutines
determined by aninteger baud, which has the vaue 110, 300, 1200, or 9600. The smplest —
and mogt congtrained — type of multiway branchis that pecified by Pascd:

care baud of

110: a():
300: b():
1200: c{):
9600: da();

end

Listingl: SmplePascd case

Theabove Pascd case satement isdefined to perform exactfy one of the subroutine calls. The
definitionof Pascd explicitly statesthat the effect of the above congtruct isundefined if the vaue
of baud isnot oneof those listed!. Hence, the compiler is free to generate code based on the
assumption that the vdueof baud mus beoned the listed values.

In contrast, the C switch and Fortran-90 SELECT are defined to explicitly filter-out
values that are not listed, and to make these vaues invoke a*'default’ action. In both C and
Fortran-90, the default action is implicitly to skip over the entire construct, but a user-defined
default action may be supplied:

switch (baud) {
case 110: a(); break;
case 300;: b(); break;

case 1200: c(); break;
case 9600: d{():; break;
default: error () :

Listing 2 C switch

! The same semantics apply to the multiway branches generated by an optimizing compiler When fine-
gain parallelization of a program mergesmultipleordinary branch ingructionsinto asinglernultiway branch
[BrN90] [Die92]. In these compiler-generated multiway branches the " casg’” wvalues are bit vectors each
vector representsapossibleset of true/false sequential branch deci si ons.

Page2

—

Multiway Branches

SLECT CAE (BAUD)
CAE (110)
CALL A()
CAE (300)
CALL B()
CAE (1200)
CALL ¢ ()
CAE (9600)
CALL DO)
CASE DEFAULT
CALL ERROR()
END SELECT

Listing 3: Fortran-90 SELECT

Although this relatively subtle semantic extenson beyond the Pascd construct significantly
increasesthe cost of the congtruct, it is generally agreed to be worthwhile. Many didectsof Pas-
cd have teen extended to allow default cases. However, this ditinction is important, and this
paper will distinguish between the treatment of unlisted valuesas undefined versus default.

Another important observation about the semantics of multiway branch constructs is that
multiple values may select the same block of code. For example, supposethat 110 and 300 are to
select the samefunction:

case baud of

110:

300: e();
1200: c();
9600: dQ

end

Listing4: Shared casesin Pasca

switch (baud) {
case 110:
case 300: e(); break;
case 1200: ¢(): break;
case 9600: d():

Listing5: Shared casesinC

Page3

Multiway Branches

SELECT CASE (BAUD)
CASE (110, 300)
CALL E()
CASE (1200)
CALL C()
CASE (9600)
CALL D()
END SELECT

Listing@ Shared casesin Fortran-90

Asidefrom being a notational convenience and helping to avoid replicating code, the mapping of
multiple selection values into asingle block of code yieds an interesting additionad benefit when
combinec! with the unlisted-undefined (Pascal) semantics. Smply stated, if 110 and 300 mgp into
the same code address, then there is no need to distinguish betweenthem. Thiseffectively gives
the search for amapping another degree of freedom, and hence makes mappingseasier to find.

A rdaed semantic extension is supported by C, in which actions are allowed to **fal
through™ unless break statements are used to mark the end of each case:

switch (baud) {
case 110: a();
case 300: b();
case 1200: e¢(); break;
case 9600: d{):

}

Listing 7. C case Fal-Through

would cause the vaue 110 to sdlect executionof a(), b(),ad c(),300 would select b ()
and c(),etc. However, this apparently dramatic difference has no impact on the mapping used
to select the correct action, but merely omits some **jump** (br eak) instructions that would
mark the ends of the actions. Thus, we can ignore this semantic difference without loss of gen-
erdity.

A more significant extension of the multiway branch semantics appears in Fortran-90, in
which intervals may be used to select actions. For example, all vaues between 110 and 300
(inclusive) would select executionof F () in:

SELECT CASE (BAUD)
CASE (110:300)
CALL F ()
CASE (1200)
CALL ¢()
CASE (9600)
CALL D()
END SELECT

Listing8 Fortran-90Interval CASE

Page 4

Multiway Branches

Treatment of these range expressions was discussed briefly in [Sal81]. Given large ranges, it is
clear that the range expressionitself is the most compact way to specify the mapping;;given sl |
ranges, Wwe suggest that the range notation be used as a shorthand, and that the range’s vaues
should be enumerated to definethe mapping. With this transformation, we may aso ignorerange
operatorswithout loss of generdlity.

Finally, it is useful to note that some languages, such as PL/I and Ada, have multiway
branch constructs that do not require the selection values to be compile-timeconstants. Clearly,
if the valuesare not congtants it is generally impossible to define an efficient mapping at compile
time. However, it is possible to recognize when all values listed as selectors in a construct are
compile-time constants, and then to treat that particular instance much like the C or Fortran-90
congtruct. The same detection agorithm can dso be gpplied to treat a sequence of i f state-
mentsasif it had been written using the C or Fortran-90 multiway branch. For example, assum-
ing that baud is not modified by a(¢), b (), c(),ad d¢), awy of thefollowing C codes
can be mechanicaly transformedintoasingleC switch:

if (baud == 110) a():
elseif (baud 300) b{;

else if (baud == 1200) c():
elseif (baud =" 9600) d{();

Listing 9: Nested i f

if (baud =T 110) a():
if (baud == 300) b{);
if (baud T 1200) c():
if (baud == 9600) d();

Listing10: i f sequence

if (baud < 1200)
if (baud == 110) a();
else if (baud == 300) b¢{):
else if (baud == 1200) c¢();
else if (baud == 9600) d{():

Liging 11: i f Tree

2. Approach

Traditionally, multiway branches have been implemented by linear sequences or trees of
comparisonsand jumps or by jump tables. An excellent overview of theissuesinvolved in usng
these encodingsis given in [Sal81). A clever combination of range checkingand use of multiple

Page §

Multiway Branches

jump tables is presented in [HeM82). The selection between these various types of encodingsin
acompiler for PL.8 isdiscussed by [Ber85].

However, dthough the comparison and jump encodings are familiar in that they represent
how amultiway branch might be encoded usngonly i f statements, thereis no reason to restrict
amultiway branch to be encoded in that way. A similar comment applies to the use of a jump
table; just becauseearly multiway branch constructs, such as Fortran's **computed GOTO,"” were
designed to be implemented directly by jump tablesdoes nat imply that the more general modem
multiway branch should be implemented in that way.

A more fundamental way to view the multiway branch constructsoutlined iin section 1 is
that any multiway branch construct definesamapping whosedomainis the set of selector (case)
vaues and whose range is the set of code addresses that are the jJump targets. ‘Thus, the best
encoding of this mapping is the best encoding of the construct. In computer terminology, such a
mapping is Smply ahash function.

The basic concept of a hash function is very simple, but the practical matter of generating
good, low-cost, functions implementing particular mappings is surprisingly complex. A number
of techniques have appeared in the literature on finding hash functions, but these techniques are
all based on the fundamental assumption that al the hash functions searched will ‘havethe same
fonn, i.e., all mappings would be implemented by the same computation except for changesin a
few congtants. It isour clam that the assumption of a particular form will often result in afar
more costly hash function than can be achieved if the form can be varied. Thus, our approachis
based on searching for the minimum cost hash function among a wide range of forms that differ
agorithmically,as well as by the valuesaof congtants.

21 Searching Multiple Forms

In spirit, our approachismos similar to that of the *‘Superoptimizer’’ [Mas87] — asysiem
which attempts to find a functional equivaent to a given instruction sequence by searching al
possibly useful instruction sequencesin order of increasing cost (increasing length of instruction
seguence,. Thisisdone using self-modifyingcode to construct each test coding. To determine if
the same function is implemented by the referenceencoding and the coding under test, each pos-
sibleinput is evaluated by both and the results are compared. If the outputs differ, the test func-
tion is immediately rejected and the search continues with the next test coding. If al outputs
match, the coding under test is reported as the solution. Thus, the Superoptimizer rmay be viewed
as searching for the least expensive hash function that will map each valuein the domain into its
corresporiding valuein the range. The primary difficulty is that such hash functions are very rare,
hence the search can take a long time and can generate excessively expensive ingruction
Sequences.

The fact that the Superoptimizer can generate excessively expensive instruction sequences
seems to contradict the clam that it searches al possibly useful instruction sequences. In fact,
thisis not contradictory; ignoring any failings of a particular Superoptimizer’s implementation,
the cheaper instruction sequences missed involve the use of data— and the Superoptimizer

Page 6

Multiway Branches

excludes constructions like lookup tables. Consider the example function fram [Mas87] that
mapseach domainvalue do « {0, 1, 2,.., 99)into trunc(do / 10). The Superoptim-
izer sequence iS 7 instructionslong, but a 100-element lookup tabletrivially implements the same
function using just 2 ingtructions. In other words, we need not find a function that directly pro-
duces the correct range value for each domain value. It is sufficient to find any collision-free
hash function (CFHF) — i.e., afunction that never mapstwo domain vauesinto the same range
vaue unless they have the same range vaue for the referencefunction. Given such a hash func-
tion, the referencefunctionvaluesare smply looked-upin atable indexed by the hash function.

CFHFs are much more common than hash functions that implement mappings without the
use of alookup table. Thus, search time should be correspondingly lower. It is also possible that
the search space can be reduced so that only aselect group of formsisconsidered; this may aso
alow those forms to be built into the search program, rather than constructing them using self-
modifying code.

22 Controlling Lookup Table Size

Thekey problem in using a CFHF with alookup table is that theindex values can be sparse,
requiring an impractically-large table. Indeed, if the size of the lookup table is ignored, the
minimum cost hash function, HASH(n}, is dwaysto use n-min(domain) to directly index a
lookup table whose size is proportiond to max(domain)-min(domain)+1, Usng such a scheme,
the table for any of the trivial multiway branch examples in Section 1 would have 9600-110, or
9490, elements.

To minimize the size of the lookup table, we wish to find a hash function which, for a par-
ticular domain containing |domain| items, maps the elements one-to-one and onto the integer
range {0, 1, 2,..,|domain|-1}. Suchafunctioniscaled a(minimal) perfect hash function,
and can be: used to implement any mapping from that domain with atable of size |Jdomain|.

Although our tool will attempt to find a (minimal) perfect hash function with a table of size
N, a function to perform this mapping might be hard to find and expensive to evauate. By
sacrificing the requirement that the function be onto, we greetly increase the probability that an
appropriate function can be found. Such a mapping takes the domain into (0, 1, 2, ..,
[domain|+k), where k-1, and all range valuesthat are not mapped into by any domain value are
""don't care’’ states, harmlessexcept in that they consume memory space. Of course, it iS neces-
sary to consider time/space tradeoffs, since the number of don't care states could become very
large and available memory space is dwayslimited. One could even argue that caches and paged
memory systems probabilistically make lookup time proportiond to table size for large tables, so
that eventually the cost of indexing the table would outweight the cost savings for the simpler
hash function. In any case, some cost must be associated with the size of t he data.

Al of the above refers to collision-free hash functions. In addition, our tool takes advan-
tage of two propertiesaf collisionsin order to speed the search and create cheaper hash functions.
Thefirg isthat if the |[domain|>|range| for the reference function, then the lookup table might be
as small as [range|. In other words, we will accept hash functions that have collisions provided

Page 7

Multiway Branches

that the domain values that collide have the same range vaues in the reference function. The
second is the observation that disambiguating between domain vaues that collided only has a
cost when the domain vaue being hashed is one involved in a collison. For example, if we
assume that adl domain eements are equally probable as input, |[domain|=100, and only two
domain vaues collide, then the cost of the comparisons(or of a secondary hash function) to dis-
tinguish between those vauesis encountered only about 2% of the time. Thus, the expected cost
for a hash function with collisons might well be less than that of a more complex hash function
which has no collisions; the expected cost of disambiguating collisons is incorporated into the
cost estimate for each hash function considered.

3 Implementation

As a proof of concept, we have implemented a system that attempts to find the minimum
cost hash function to perform any given mapping. This system consists primarily of aset of C
and AWK programsthat automatically generatea C program that will find appropriate hash func-
tions to implement any mapping. The search program takes full account of the machine-
dependent costs of different formsfor the target architecture, and need not be executed on the tar-
get machine; for example, all the results presented in this paper were obtained by running the
searcheson a 16,384-processing lement SIMD supercomputer (a MasPar MP-1 [B1a90]), since
that alowed amuch larger set of forms and parameter va uesto be considered.

31 The Forns Tabl e

To smplify customizing the set of formssearched, the forms are given by atable specifying
al the form-dependentinformation. Eachlinein this table specifies aform:

e Thefirg fidd isthe " Formula'" i.e. actua C code that will compute HASH (n). The
formulaalso may be parameterized by oneimmediate (constant) value called i.

e The next two fidds specify the ““Min’’ and ""Max"* valuesfor i in this formula; the
form is considered for each integer value of i between Min and Max (inclusive). The
Min and Max can be specified as absolute values or a functions of various attributes
derived from the mapping, such aslogmax, thelog, of thelargest value inthe domain.
If the formulais not parameterized, then MinsMax=0.

e Thefourth fidd isasymbolic C expressonfor the execution ** Cost™ of the form asa
function of i. For pruning the search, it is assumed that asi isincreased from Min to
Max, the Cost is non-decreasing.

e Thefind fidd describes how to *‘Print** the form. In the current version, thisis Sm-
ply aset of argumentsto print £ () to output the C code for the form selected —
and is somewhat redundant in that the first fidd provides essentidly the same infor-
mation. However, thislast fidd is separated-out so that it would beeasy to modify the
search program to generate machine-specific assembly code.

Page 8

Multiway Branches

For example, using the results reported in table 2, we can congtruct a forms table describing only
those form!; which were selected as optimal in implementing at least one of the test mappings for
the Sparc processor. The resulting formstableisgivenasTable 1.

Formula Min Max Cost Print

n>>i 1 logmax N+SHR (i) +| "n>>%d", i

n 0 0 N wn"

(n>>i)*n 1 logmax N+SHR(i)+I+XOR+N " (n>>%d)“n", i
(n>>(n&i)) 1 logmax N+SHRN+N+AND+I "{(n>>(n&sd))", i
(n>>1)+n 1 logmax N+SHR(i)+I+ADD+N "{n>>%d)+n", i
(-n)>>1i 1 logmax NEG+N+SHR (1) +| "(-n)>>%d", i

Tablel: SampleFormsTablefor Sparc

Notice that the formsgiven are missing afina step which ensuresthat the table bounds are
not exceeded by usng modulus. There are two reasonsfor thisomission. First, thisfind stepis
common to al forms, hence, it can be assumed. Second, the operation used is only a true
modulusif' the table Size is not a power of two; power of two table Sizesare handled by masking,
and generally at lower cost than using modulus. This adjusrment is made automatically in the
seach program. Thus, the formula n is actudly ether (n)%SIZE with cost
N+MOD(S| ZE) +| or (n) &sMASK2 with cost N+AND+I, depending on whether SI ZE is a
power of two.

It isuseful to further notethat the Cost field expressonsare not in termsaof arbitrary names.
Rather, a € program was constructed to experimentally determine gpproximate relative times for
avariety of basic operations. When run on the target machine, the output of that C program is a
setof #defi ne directivesthat givet he relative execution timesfor each of the basic operations.
For example, the Sparc ratio between cost of ADD and cost of MULN was measured as 90:2323
(i.e., multiply is about 26x the cost of an add) — which explains why multiply operationsare
rarely used in the forms chosen asoptimal for the Sparc.

33. TheSearch Code

A pure C program is congtructed to efficiently search for the lowest-cost mapping. There
are two basic dgorithms involved in the search; one that guides the search overall and another
that is applied to evaluateeach form.

2 Wheae MASK=SIZE-1,

Page 9

Multiway Branches

33.1. Search Control Algorithm

There are severd dimensionsto the search for a hash function. Not only must the correct
form be selected, but we also must find the correct parameter value and size of the hash table.
There are many ways in which this could be done, however, some techniques prune the search
gpace faster than others. We do not attempt to optimize the search order, but we do employ afew
heuristics to improve it. We search power-of-two table sizes firg because they use masking
rather than modulus instructions, and the lower cost of masking tends to prune the search faster.
In addition, searching smaller tables firgt tends to prune faster because there is less memory use
cost. Theoveral dgorithmis:

1

© » N O

10.
11
12.

13.
14.

Set bestcost = cost of the best conventional encoding.
(E.g., only want functionscheaper than optimal binary search.)

Set cursize = the least power of 2 2 |range].

Set maxsize= (bestcost / cost per unit of memory use) - 1

(Ashig as the hash table can be before the table size itself makes some other function
cheaper.)

If cursize > maxsizethen goto 8.

For each form, use the form evaluation agorithm to find cheapest for hash table of
Size cursize.

(If a new best is found, bestcost is updated, thus steps 3 and 4 may prune the search
earlier.)

Set cursize = cursize * 2.

Goto 3.

Set cursize = |range].

Set maxsize = (bestcost /cost per unit of memory use) - 1.

(Ashig as the hash table can be before the table size itself makes some other function
cheaper.)

If cursize > maxsizethen done.
If cursize isa power of two then goto 13.

For each form, use the form evaluation agorithm to find cheapest for hash table of
Size cursize.

(If a new best isfound, bestcost is updated, thus steps 9 and 70 may prune the search
earlier.)

Set cursize = cursize T 1
Goto 9.

Page 10

Multiway Branches

B2 BvJuation of a Form

Two smple AWK scripts are used to convert the table of form descriptions into pure C
code to evaluate the cost of using each form to implement the desired mapping. One script gen-
eratesa C function that searches for the lowest cost form for a table size that is not a power of
two; the other handles only power of two table Sizes. In either case, the evaluation of each form
isdone by the sameagorithm.

To evauate each form, the hash function for each parameter value for that form is gpplied
to hash all the domain items, and a hash table is used to detect conflicts. Rather than resetting
(clearing) the table before each function is tested, we use a serid-numbering scheme to ensure
that hash table entries made when trying the form for thisvalue of i have values that do not over-
lap those made for any other valueof i. Thedgorithmis:

1. Seti=Minforthisform.

2. If i> NX then done.
(The complete set of possible parameter valueshas been checked.)

3. Setcost = cost of memory use+ executiontime cost of thisform for the parameter .
(Memory use cost accounts for table size.)

4. If cost 2 bestcost then done.
(This prunes based on the fact that the cost of a form is non-decreasing as i is
increased.)
5. Setserid =serid + rangel.
(Get a new base serial number for table entries.)
6. Foreachvdued< domain do:
a) Set h=HASH(d), r= serid + position of mapping(d) in range.
(HASH() is the computation given by the formula, with either the modulus or
masking included.)
b) If table[h] < serid then go to stepf.
(Thistable entry was empty.)
c) [f table[h] = r then continue with the next loop iteration.
(Thistableentry already mapsto the desired value.)
d) Setcost=cos+cost of acollison.
(The hash of d was the same as the hash value of somed such that mapping(d)
mapping(d’).)
g) If cost 2 bestcost thenexitthe for loop.
f) Settable[h]=r.
(Reservehash table entry h for mapping(d).)
7. If cost < bestcost then record thisform as the new best and set bestcost = cost.

Multiway Branches

8. Incrementi.
9. Gotostep2.

It is sgnificant that the above dgorithm is aso trivialy adapted for a SIMD (Single Instruction
stream, Muitiple Data stream) parallel search. Indeed, two more AWK scripts wee created to
generate MPL [Mas91] programsto perform the parale search on a 16,384 processing element
MasPar MP-1 supercomputer [Bla90]. The only changes to the form evaluation agorithm
involve declaring a few variables as paradlel (plural, in MPL) and changing a few agorithm
seps.

Set i = Min for thisform + the current processing el ement number.

7. If cost < bestcost and cost for this processing element is the lowest then record this
processing element's form as the new best and set bestcost = cost for the processing
element.

8. Seti=it the number of processingelements.

Notice that since the MasPar MP-1 has 16,384 processing elements, there may be up to a
16,384-way tie for the lowest cost in step 7. Hence, the paralel version may select a different
parameter value (i.e., value of i) from that found by the sequentia search. To force consistent
behavior, our MasPar code will dways resolve such atie by taking the lowest parameter value —
exactly asthe sequential search would.

How much speedup did we get? That depends greatly on the forms used. SIMD paradlé-
ism in the above is not acrossforms, but rather across groups of up to 16,384 different parameter
vaues. For the formslisted in table 1, the maximum possible pardlelismis the log, of the max-
imum domain value — presumably, 32 or less. In such a case, the MasPar yields a speedup of
lessthan two over amodem workstation (e.g., a Sparc). In contrast, some forms have parameters
that span millions of values, in which case the MasPar often provides a speedup of athousand or
more. As discussed in section 4.2, it took many long runs on the MasPar to demondtrate that
omission of mog of the forms would have relatively little impact on the cost of the best form
found. In other words, the speedup is irrdlevant; we smply used a supercomputer to quickly
determine the set of formsto usefor a production version of the system that can easily runin rea-
sonable lime on aworkstation or PC.

33. We of Cost Information

Although the search and form evauation agorithms do not seem to directly manage the
various semantic differencesnoted in section 1, the system actualy does take these differences
into account. All of thesevariationsare handled smply by adjusting the cost computations.

33.1. Default Vs. Undefined Semantics

Given a CFHF, we have the complete implementation of the undefined semanticsfor values
not e domain, All the hash functions generated by the above scheme will take any input and map
it into some table entry; to implement default semantics, we must smply test if the value that

Page 12

Multiway Branches

mapped into this table entry is actudly the domain member that was intended to map there. For
example, for the Sparc the cheapest CFHF for the domain (110,300, 1200,9600) was the func-
tion (n>>7)&3). This maps 110 into 0, 300 into 2, 1200 into 1, and 9600 into 3; however, it
would also map 2400 into 2. Thus, we insert code for each hash value to check: if the value
hashed was the domain value intended. 1.e., code something like:

table: data rll0, rl200, r300, r9600

r <- ((n>>7)&3) ;compute hash(n)
jump table[r]

rllo: if (n = 110) goto default
{ case for 110 }
r300: if (n != 300) goto default

{ case for 300)

rl200: if (n != 1200) goto default
{ case for 1200 }

r9600: if (n != 9600) goto default
{ case for 9600)}

Listing12: Handling Default Semantics

The cost overhead for this treatment is easily predicted, since it is smply the execution time of
one compare and jump plus the memory use pendty associated with the codeimplementing these
compares and jumps (usualy, a few words for each domain element). Adding these costs, no
other chaniges need be made to the search algorithm.

The GFHF above used dl hash vaues. If there were some hash vaues that no domain ele-
ment mapped into, the additional compares and jumps would be omitted for those hash values
and the jump table entry would lead directly to the default. Thus, this can aso be effectively
modeled by smply adding the appropriate cost, which is dwaysthe compare and jump cost times
|domain).

If thel-IFfound is not a CFHF, there will be additional overhead in handling the collisions
asdiscussed in the next section, but nothing else is different.

33.2. Handling Collisions

As written above, the dgorithm seems to find an HF which is not necessarily a CFH-.
Surprisingly, al the variationson the handling of collisionsareimplemented by simply changing
the cost associated with acollision, as goplied in step 6d of the form evaluation algorithm.

If we wish to obtain an HF which minimizes expected runtime, it is somewhat surprising
that disambiguating conflicts caused by asmple hash function is often chegper than usng amore
sophisticated hash function that has no conflicts. The reason is smple. Suppose that K of the
|domain| valuesin the domain of the mapping cause conflicts. Whenever one of those K valuesis
hashed, we will need to perform some additiona tests— linear search, an optimized binary
search, or even a secondary hash function. Whichever we choose, the memory use cost is trivi-
dly computed and the execution cost is Smply the expected cost of executing the additional

Page 13

Multiway Branches

ingtruction sequence. Note that even a high cost method (e.g., linear search) tends to have a very
low expected execution cost because the number of items searched is rarely more than two and
the probability of executing the additional search & all is only K/ldomain|, which is typicaly less
then 10%. The current version assumesthat an optimal binary search will be used. to disambigu-
ate collisions; the probability used to weight each execution cost is 2/|[domain| for each collision.

Further, suppose that we wish to ensure that only a CFHF will be selected. All we need do
ismakethe weighted cost for acollision 2 the cost for the best CFHF found thus far.

4. Resullts

In order to test the effectiveness of the above approach, we conducted two separate types of
tests. The firg involved taking the example cases presented for previous coding techniques,
determining the optimal hash encoding, and then comparing the previoudy published result with
our result. The second involved taking alarge, hopefully statistically significant, set of mechani-
caly generated test problems and observing the performance of the search agorithm and the
solutions found.

4.1. Example Cases

In order to support a direct comparison with previous work, in this section we present the
lowest-cost encodings our system found for the same example cases that appeared in [HeM82].
The costs we used are those reflecting the measured performance of a Sparc processor and the
unspecified casevaluesare treated as undefined (the standard Pascal interpretation).

Our first example, shown in listing 13, is the one used by [HeM82] to illustrate a Pascal
cas e Statement with case values that are too sparse to make a jump table implementation effec-
tive. A; per Sal€'s paper {Sal81), it is suggested that the best encoding is an optimal binary
search. However, our system easily found hash functions with lower time and space wst. The
CFH-found by our system if dl domain elements must be mgpped to unique hash vauesis given
in table 2. However, our system can find even chegper solutions by alowing domain elements
that map into the same range value to **share™ the same hash value. The cheapest such function
dsoisgivenintable 2

case J of
3, 5, 4: stmtl;
100: stmt2;
200: stmt3
end

Listing 13: Pascal case from [HeM82]

Page 14

HASH (J)=(((JI>>3) "J) &7)

Multiway Branches

HASH (J)= ((J>>5) &3)

HASH (J) =0
HASH (J) =1
HASH (J) =2
HASH (J) =3

{3:stmtl, 4:stmtl,

{200: stmt 3}
{100:8tmt2}

S:stmtl}

HASH (J)=0 {100:stmt3}
HASH (J)=1 {200:stmt4)
HAH (J)-2 -

HAH (J)-3 {3:stmtl}
HAH (J)4 {4 stmtl)
HASH (J)-5 ({S:stmtl}
HASH (J)-6

HASH (J) -7

Table2 CFHF and CFHF with Sharing for Listing 13

The other example from [HeM82]), as shown in listing 14, involves a case Satement
whose casevaluesoccur in aseriesof "'runs."" Thisis precisdly the typeof construct Hennessy's

paper attempts to optimize, by using
nn).

a set of range tests and multiple jump tables (one for each

case K of
1: stmtl;
2: stmt2;
3: stmt3;
4: stmtd;
5: stmt5;
6: stmt6;
7: stmt?;
8: stmt8;
1001 stmt9;
1002: stmel0;
1003: stmtll;
1004: stmtl2;
2001: stmtl3;
2002: stmtl4;
2003: stmtlS;
2004: stmtlé

end

Listing14: Pascd case with Runsfrom [HeM82]

Multiway Branches

HASH(K) = (((K>>8) +K) 615) HASH(K)= (K&31)
HASH(K)=0 - HASH(K)=0 -
HASH(K)-1 {1:stmtl} HASH(K)-1 (1: stmtl}
HASH (K)=2 {2:stmt2} HASH(K)-2 (2 stmt2}
HASH(K)-3 (3:stmt3} HASH(K)=3 (3:stmt3}
HASH(K)=4 {4:stmt4} HASH(K)=4 (4:stmt4}
HASH(K)-5 (5: stmt5} HASH(K)=5 {S:stmtS}
HASH(K)=6 (6:stmté6} HASH(K)=6 (6. stmté6}
HASH(K)-7 {7:stmt?7) HASH(K)-7 (7: stmt7}
HASH(K)-8 ({8:stmt8, 2001: stmtl3} HASH(K)=8 ({8:stmt8}
HASH(K)-9 (2002: stmt14) HASH(K)=9 {1001:stmt9)
HASH(K)=10 {2003:stmtl5} HASH (K)=10 (1002:stmtl 0}
HASH(K)=11 ({2004:stmtl6} HASH (K)=11 {1003:stmtll}
HASH(K)=12 {100l:stmt9} HASH(K)- 12 {1004:stmtl.2}
HASH(K)- 13 {1002:stmt10} HASH (K)=13 -
HASH(K)=14 {1003:stmtll} HASH (K) =14
HASH(K)- 15 {1004:stmtl2} HASH(K) =15

HASH (K) =16

HASH(K)- 17 (2001: stmtl3}
HASH(K)- 18 (2002:stmtl4}
HASH(K)=19 {2003:stmt15}
HASH(K)- 20 {2004:stmtl16}
HASH(K) =21 -

HASH(K) =22
HASH(K) =23
HASH (K) =24
HASH (K) =25
HASH (K) =26
HASH(K) - 27
HASH (K) =28
HASH (K) =29
HASH (K) - 30
HASH (K) =31

Table3: HFand CFHFfor Liging 14

Asone might suspect, it is relatively difficult to find CFHFs when there are rnultiple runsin
the case values3. The cheapest HF found for this particular data set was not a G~HF, but the HF
given in table 3. Case values of 8 and 2001 both hash to the same table entry (hash vaue 8).
Thus, although hash values other than 8 can directly jump to the appropriate statement, the hash
value 8 case must jump to an instruction sequencethat tests to see whether the value hashed was
8 or 2001, and then jumps to the appropriatelocation. Fortunately, the additional execution time
of this comparison only has a 2/16 probability of occurring, so it iseasy to seethai the HF is both
faster and smaller than an implementation using range tests to choose between multiple jump
tables.

By changing the apparent cost of a collision (as discussed in section 3.3.2), we forced our
system to find the lowest cost CFHF for the case statement of listing 14. The result is the
remarkably smple CFHF givenin table 3. In fact, the CFHF in table 3 is so smple compared to
the HF in table 3 that it is difficult to see how the HF could have lower cost. The answer is

3 In fact, thisobservation inspired the additional st of testspresented in section 4.2.2.

Page 16

Multiway Branches

smply that despite a more complex hash function and one collision, the HF is cheaper than the
CFHF because the HF usesamuch smaller hash table — i.e., it usesfar lessmemory space.

Although our system will not aways find a cheaper implementation, it did find one for
every non-trivial example in the paperscited. The success rate would be reduced if we agpplied
the unspecified—default semantics, as used in C and Fortran-90, but that effect. is relatively
smal. Thus, thesystem wasgivena'' siresstest™ to determine what itslimits are,

43. Performance Statistics

The MPL (SIMD paraldl) verson of our system was used to find hash functions for awide
variety of test cases. The MPL version was used becauseit runson a 16,384-processingelement
MasPar MP-1 supercomputer, hence, we were able to consder an abnormally wide variety of
forms.

Since the pruning of the search depends heavily on the relative costs of forms, it is aso
important to determine how the system performsfor avariety of target machines. Three common
processors and one idealized processor were selected astargets:

e Intel 386sx. Selected for its popularity as a ClSC microprocessor, used primarily in
PCs.

e Sun Sparc. This was sdlected as an example of a RISC processor, typicaly used in
UNIX workstations.

e MIPSR3000. Sdected asasecond example of a RISC processor, aso used in UNIX
workstations.

e Super. Anidedlized processor whose characteristics approximate those: of processors
used in supercomputers.
For each real target machine, the relative costsfor different typesof instructions wereempirically
determined using the C program described in section 3.

4.2.1. HF/CFHF Search for Random Mappings

To determine how the system performs, aset of 1,280 random mappings werecreated. The
|domain] was from 2 to 128 vaues, each of which was between 0 and 65,535 inclusive. Range
vaues were randomly selected between 0 and Jdomain]-1, inclusve. Each mapping was con-
Sdered both with and without sharing of hash values, for a tota of 2,560 input mappings. All
2560 input sets were usad to find the cheapest HF and the cheapest CFHF for each of the red tar-
get architectures. |n each case, 142 formsand millionsof parameter values were considered.

Figure 1 shows the average relative cost for the cheapest HF (not necessarily a CFHF)
found versus a traditionad optima binary search. The rather surprising results show approxi-
mately a4x improvement (reduction to about 0.25 cost). The cost islow even for very smdl data
sets primarily because the data sets with sharing alowed often have near zero cost for small data
s, even without sharing the cost is often low because the table uses less memory than the
ingtructions implementing binary search. The jagged waveform pattern is due to the fact that

Page 17

Multiway Branches

power-of-two table sizes have a significant cost advantage in that they use masking rather than
modulusto confinehash valuesto thetablesize.

1
0.9
0.8 -
0.7 -
0.6 —

-=-=-= MIPS R3000
........ Intel 386sx
—— Sun Sparc

|Domain|
Figure1l: HFReative Cost for 386sx, Sparc, and R3000

Clearly, asgnificant performance increase was obtained. However, the use of HFs ingstead
of CFHFs requires insertion of comparisons to disambiguate where collisons occur, and this
complicates the coding. Thus, it is useful to consider what the performance would be if we
required the HFs to al be CFHFs. The results of this are shown in figure 2. The remarkable
smilarity betweenfigures1and 2 isdueto the fact that the cheapest HFfound is often a CFHF.

Page 18

Multiway Branches

1
0.9 j
0.8 - ---- MIPSR3000
0.7 =4 e Intel 386sx
0.6 — —— SunSparc
0.5 —
0.4 -
0.3 4
0.2
0.1
04
| i | | | L]
2 4 8 16 32 64 128
|Domain|

Figure2 CFHF Relative Cost for 386sx, Sparc, and R3000

The next obvious question is how long did it take to find these functions? This is a very
difficult question to answer, since it depends greatly on how many forms are considered and
might depend heavily on the particular mappings searched for. The absolute search times for a
large set of forms using the MasPar MP-1 supercomputer are relatively meaningless, however,
the trends are significant. Figures3 and 4 show, respectively, the average time taken (in seconds)
to find the: cheapest HF and to find the cheapest CFHF.

Asexpected, search times grow dowly aslarger domains are considered and searching for a
CFHF generally takeslonger than searchingfor an HF. For the HF search, thereisadip in search
time whan |domain| is slightly greater than a power of two — presumably because a very cheap
solution is likely to be found very early in the search when the next largest power-of-two table
sizeisconsidered. Thereisasimilar jagged pattern in the CFHF search times, but the patternis
obscured by the fact that there is more variation in CFHF search times, especially as|domain| gets
large.

Page 19

Multiway Branches

Intel 386sx

2.5 4
; MIPSR3000
Sun Sparc

T 1
16 32 64 128

i

|Domain|
Figure3: HF SearchTimesfor 386sx, Sparc, and R3000

12.8 <
]

64— ---- MIPSR3000

|Domain|

Figure4: CFHF Search Timesfor 386sx, Sparc, and R3000

Although the MasPar MP-1 times are not directly useful, thereis an additional benefit: by
trying so many (142) forms and mappings, we can be relatively certain that all useful forms will

Page 20

Multiway Branches

be used at least once. Thus, to create a **production’ case-statement coder, we need only
search the forms that the massive tests on the MasPar MP-1 have shown to be useful for that
machine. Over all 7,680 hash functions found for these three target machines, only 13 of the 142
formstried,were selected asoptimal. Thesearelisted in table4. For the 386sx, 13forms must be
searched. For theR3000, only 7 f o nsare needed; for the Sparc, it isjust 6. Mogt of theseforms
aso have small parameter search spaces.

Times Form Selected
Total Lowest Cost HF L owest Cost CFHF Formula
_ 386sx 13000 Sparc 386sx 13000 Sparc
. 6916 || 1049 | 1161 1206 |) 1084 | 1207 | 1209 || (n>>i) &MASK R
i 573 193 100 56 112°] 56 56 (n) §MASK
40 12 3 7 8 5 5] ({n>>1i) “n)&MASK
38 10 0 0 28 0 0 || (n&i)%SIZE
L 30 3 7 6 2 6 6 [((n>>(n&i)))&MASK
| 27 0 0 0 27 0 0 || (n"1)%SIZE
| 17 3 1 3 4 3 3] ((n>>1i)+n) &MASK
16 8 4 0 2 2 0 ((n~(n>1i))) &MASK
10 1 4 2 1 1 1 || {((-n)>>1)&MASK
7 1 0 0 6 0 0 || ((~n)~1i)%SIZE
3 0 0 0 3 0 0 || ((n+i)"n) ¥SIZE
2 0 0 0 2 0 0 || ((n>>i) *n) &MASK
1 0 0 0 1 0 0 || ({("n)/i)&MASK

Table4: Lowest-Cost Forms Selected for Random Mappings

Note that in every case our system found a hash function whose cost was lower than that of
an optimal binary search.

42.2. HF/CFHF Search for Mappingswith Runs

Preliminary experiments, such as the case statement shown in listing 14 of section 4.1,
led to the observation that good hash functions are more difficult to find for mappings in which
there are several runsin the domain. To further investigate this notion, the program used to gen-
erate random mappings was modified so that the probability of any two adjacent domain vaues
having their values differ by 1 (i.e., be part of the same run) was 1/2. This tends to generate
domains with many relatively short runs irregularly spaced, which we suspected would be nearly
the worst,-casescenario.

Except for the above difference in how the mappings were selected, the same tests
described.in section 4.2.1 were performed. The general performanceof the search was very simi-
lar to that reported for random mappings. However, there were severa very important differ-
ences between the f o n s selected asoptimal for the random mappings (table 2) and those selected
for the mappingswith runs(table 5):

Page 21

Multiway Branches

Times Form Sdected
— L owest Cost HF L owest Cost CFHF Formula
toal 386sx r3000 Sparc 386sx 13000 Sparc
2216 505 717 397 167 193 237 (n) &§MASK
1672 57 275 487 70 251 532 ((n>>1) “n) &MASK
970 413 0 0 445 112 0 (n"1)SSIZE
906 34 183 290 16 147 236 { {(n>>1) +n) &§MASK
454 0 0 0 154 171 129 || No hash found
332 121 0 0 146 65 0 ((-n) “1)%SIZ2E
| 227 7 18 0 51 137 14 ({n-(n<i))) &MASK
206 94 0 0 106 6 0 (n&l) $SIZE
179 1 14 64 2 26 72 ((n>>({n&i)))} §MASK
152 16 40 32 16 24 4 (n>>1) &éMASK
149 1 10 0 32 106 0 {{n—(n>i))) &MASK
82 8 20 10 16 17 11 { (~n)>>1i) ¢éMASK
28 10 0 0 14 4 0 {n) $SIZE
23 7 0 0 14 2 0 (1-n) $SIZE
21 1 3 0 1 16 0 ((n~ (n>1))) &MASK
9 0 0 0 9 0 0 ((n*i)“n) 8SIZE
8 0 0 Q 0 1 1 ((n>>1) *n) ¢MASK
\ 5 0 0 0 0 0 5 ({n+(n<i))) eMASK
‘ 4 3 0 0 1 0 0 (n%1) 4MASK
4 0 0 0 4 0 0 {((n*1)*n)$SIZE
4 0 0 0 2 2 0 {(n>>1) “n)ASIZE
4 0 0 0 0 Q 4 { (pop (nli) “n) } §MASK
3 1 0 V) 2 0 0 ((n+i) “n) $SIZE
3 0 0 3 0 0 ((n"1)%n) $SIZE
3 0 0 0 3 0 0 ((n%i)+n) $SIZE
3 0 0 0 0 0 3 ((n~ (n<i))) &§MASK
2 0 0 0 2 0 0 (-(n"1i))$SIZE
2 0 0 0 2 0 0 ({"n)%i)%SI2E |
2 0 0 0 0 0 2 || ((pop(n~i)+n))&MASK
2 0 0 0 0 0 2 || ((pop(n>>1) ~n)) «MASK
2 0 0 0 0 0 2 ((pop{n>>i)-n)) tMASK
1 1 0 0 0 0 0 {("n) %1)&MASK
1 0 0 0 1 0 0 {((n/i) “n) éMASK
1 0 0 0 1 0 0 {({n/i)"n) $SIZE

Table5: Lowest-Cost Forms Selected Mappingswith Runs

e Thenumber of different formsselected was much larger. Instead of 13, there were 33
different forms. The 386sx needed 26 vs. 13, the R3000 needed 16 vs. 7, and the
Sparc needed 14 vs. 6; in summary, twice as many fotmsas for random mappings.

e There were some mappings for which no CFHF was cheaper than binary search. The
fraction of failures ranged from 10% for the Sparc to 13% for the R3000. However
disappointing this may be, notice that the system never failed to find an HF that was
cheaper. Thus, a production system should allow HFs that are not CFHFs.

e Some of the fotmulas sdlected used pop — a function to compute the population
count (number of 1 bits). Thisisinteresting because pop isnot aninstruction on any
of these processors, but rather a subroutine call. Thus, the cost of pop was much
more than it would be for machines that have that instruction— as most

Page 22

.

Multiway Branches

supercomputers do (e.g, al Cray machineshave a population count instruction).

Thislast observation led us to define the generic supercomputer instruction set costs (called Super
in section 4.2), including the treatment of pop as an instruction rather than a subroutine. In the
three real target machines, the timing for population count was obtained using a subroutinecall to
the C functiongiven inlisting 15.

int

pop(register unsigned n)
{
/* Compute population count by SMD summation
of the bits within the 32-bit word n.
*/
register unsigned mask - 0x55555555;

N~ (n& mask) + ((n > 1) & mask);
mask ~ 0x33333333;

n = (n 6 mask) + ((n > 2) & mask);

mask = O0xOf0f0f0f;

n = (n & mask) + ({(n > 4) & mask);

mask ~ OxO0ffO00ff;

n- (n& mask) + ((n > 8) & mask);
mask = OxO0Q0ffff;

return((n & mask) + ((an >> 16) & mask));

Listing 15: C Functionto Compute Population Count

433. A Target Machinewith Population Count

The " Super™* target machine cost model was designed to reflect relative costs for various
instructionsin an idedlized supercomputer instruction set. Most operations, including population
count, are assumed to take asinglecycle; multiplicativeoperations are assumed to take 8 cycles?.

The exact same test mappings used in sections4.2.1 and 4.2.2, both the random and multi-
ple run mappings, were submitted to the system to find optimal hash functions for the Super
costs. The forms selected for the random mappings are listed in table 6; table 7 lists the forms
selected for the mappings with runs.

4 Although many supercomputers have faster multiplicativeoper ation times, that ability is often restricted
to floating point operationswhile the operationsperformed here are on integers. The 8-cycle cost represents
an approximationover hardware, convert to float, and multiply-stepimplementations. This cost isnot critical
to the point bei ng made with thedata for the Super target.

Page 23

Multiway Branches

~ Times Form Selected
Total LowestCost HF Lowest Cost CFHF Formula
727 297 430 ((pop (n|i) +n)) &MASK
502 294 208 (n) «MASK
333 138 195 (n>>1) &MASK
155 86 69 (pop (n]i)) &§MASK
150 97 53 (pop (n+1)) §MASK
119 31 88 ((n+{n>1i))) &MASK
100 33 67 (n&i)$SIZE
95 66 29 { (pop (n+1) +n)) §MASK
ki 48 29 (pop(n~1i)) &MASK
67 i3 34 (pop (n)) &MASK
65 43 22 ((pop(nji) “n)) &MASK
42 27 15 ({pop (n*1i) +n)) §MASK
34 20 14 ((pop (n]i)-n)) &MASK
28 24 4 (({pop (n+1) “n)) &MASK
22 15 7 ((pop (n+1i) -n)) &MASK
12 10 2 ((pop (n~1) "n)) &MASK
11 7 4 (n"pop (n)) 8MASK
9 6 3 {(n+pop (n)) 4§MASK
6 0 6 (n"1)%SIZE
4 4 0 (n-pop (n)) &MASK
2 1 1 {(pop(n~1i)-n)) &MASK |

Table6: Lowest-Cost Forms Selected for Random Mappings

Page 24

Multiway Branches

Times Form Selected
Total LowestCostHF Lowest Cost CFHF Formula
680 - 517 163 (n) &MASK
| 451 172 279 (n“1)¥SI2E
229 123 106 ((pop (n+1i) +n)) §MASK
205 63 142 ((pop (n|1) +n)) «MASK
160 104 56 {pop (n+1)) &MASK
118 54 64 (pop (n|i)) &MASK
104 36 68 {{pop{n~1)+n)) &MASK
95 0 95 No hash found
78 40 38 {pop (n~1)) &MASK
74 41 33 ((pop (n+i) “n)) &§MASK
69 11 58 ((-n) "1)S$SIZE
64 40 24 ((pop(nji) "n)) &MASK
60 17 43 (n&i)%SIZE
49 26 23 (pop (n)) éMASK
27 17 10 ((pop (nl1) -n)) &MASK
22 1] 22 ((n+(n>1))) &§MASK
14 7 7 {n) $SIZE
13 6 7 (n"pop (n)) &MASK
12 2 10 (n+i)%SIZE
10 0 10 ((n+ (n<l1))) §MASK
6 1 5 (n|pop (n)) §MASK
4 2 2 ((pop {n~1i) “n)) &MASK
3 0 3 (n+pop (n)) &éMASK
3 0 3 ((n" (n>1))) §MASK
2 1 1 (n%1) &MASK
2 [2 ((n%1i) +n) $SIZE
2 0 2 {((-n)%1)%STZE
1 0 1 {n—-pop (n)) &MASK
1 0 1 {(pop(n|i) “n)) $SIZE
1 0 1 ({pop(n~1i)+n))$SIZE
1 0 1 {(pop{n+1i)|n)) &MASK

Table 7 Lowest-Cost Forms Selected Mappings with Runs

The sgnificant observation is that population count was used in 16/21 formulas from table
6 and in 18/30 from table 7. These results are so strong that they may be seen as sufficient
justification for adding a population count instruction to aprocessor's ingtruction set,

Why is use of pop so effective for hash functions?— because pop uses the binary
representation to efficiently distinguish valuesin a highly non-linear way. It is useful to recal
thet the hamming distance between two values can be obtained by exclusive-oring ihe two values
and taking the population count of the result, so the use of pop is redly incorporating a ham-
ming distanceinto the hash computation.

5 Conclusions

In this paper, we firgt discussed the semantics associated with multiway branch statements
in C, Pascal, and Fortran-90. Thisled to abrief review of the traditiona codings used, and to the
observation that careful generation and use of a hash function to encode the mappingshould yidd
consistently good results.

Page 25

Multiway Branches

Seriadl and massively pardlel implementations of a system to automatically generate
machine-specific hash functions are detailed in section 3. The performance of the system is stu-
died in section 4. Although restricting the hash to be conflict-free will cause the system to occa-
sionadly fail to find a cheap hash function, the results clearly show that an average improvement
of about 4x can be expected by letting the system find an appropriate hash function that may have
afew conflicts. Multiway branch statements in which the case values have several runs were
shown to be more difficult than random case values, but were still handled efficiently by search-
ing only a small number of forms.

Finally, driven by the observation that population count was used a few times in the
cheapest formulas selected for machinesin which population count was very expensive, we Stu-
died the effect of having a relatively cheap population count instruction. As shown in section
423, if a population count instruction is available, it is used in most of the fonns selected as
optimal. Thus, we suggest that population count should be considered as an instruction providing
efficient hardware support for computing hash functions.

The software described in this paper is available as a public domain software package; send
email to hankd@ecn.purdue.edu for moreinformation. In the future, we hope to integrate
these techniques into the public domain Purdue Compiler-Construction Tool Set (PCCTS)
[PaD92], so that al compilers generated by PCCTS may incorporate a target machine specific
phasethat will generateoptimized hash codings for multiway branches.

Thanks are given to W. E. Cohen for his helpin proofreading and correcting this paper.

Page 26

Multiway Branches

Reference;

[ANS89] American National Standard for Information Systems— Programming Language
Fortran, X3J3/88.112, June 1989.

[ANS90] American National Standard for Information System— Programming .LanguageC,
X3J11/90-013, Feb. 1990.

[Ber85] R.T. Bemstein, " Producing Good Code for the Case Statement,”" Software Practice
and Experience, Val. 15(10), pp. 1021-1024, Oct. 1985.

[B1a90] T. Blank, "* The MasPar MP-1 Architecture,” 35th IEEE Computer Society Interna-
tiona Conference(COMPCON), February 1990, pp. 20-24.

[BrN90] C.J Brownhill and A. Nicolau, *‘Percolation Scheduling for Non-VLIW Machines,"
University of Californialrvine, Technica Report 90-02, Jan. 1990.

[Die92] H.G. Didz, ""MetaState Converson,” Parallel Processing Laboratory, School of
Electrical Engineering, Purdue University, Indiana, Technical Report in preparation.

[HeM82] JL. Hennessy and N. Mendelsohn, **Compilation of the Pasca Case Statement,™
Software Practiceand Experience, Val. 12, pp. 879-882, 1982.

[Jew75] K. Jensen and N. Wirth, Pascal User Manual and Report (2nd edition), Springer-
Vedag, 1975.

[KeR78] BW. Kemighan and D.M. Ritchie, The C Programming Language, Prentice-Hall,
New Jersey, 1978.

[Mas91] MasPar Computer Corporation, MasPar Programming Language (ANSI € compati-
ble MPL) Reference Manual, Software Version 2.2, Document Number 9302-0001,
Sunnyvale, California, November 1991.

[Mas87] H. Massalin, ‘‘Superoptimizer — a Look at the Smallest Program,"” IEEE Proceed-
ingsof ASPLOSII, pp.122-126, Oct. 1987.

[PaD92] T.J Parr, HG. Dietz, and W.E. Cohen, ""PCCTS Reference Manud (version 1.00),"’
ACM S GPLAN Notices, Feb. 1992, pp. 88-165.

[Sal81] A. Sdle, "' The Implementation of Case Statementsin Pascd,"* Software Practice and
Experience, Val. 11, pp. 929-942, 1981.

Page 27

Multiway Branches

Tableof Contents

L Introduction ,............c.o.coeeevrannn, U U POV PO PO TSPPOPR: 2
20 ADPIOACKH ..ot st s b st en et e e E R SRR bR R e bbes 5
2.1, SearchingMUItIPIE FOMMIScovviiieirei s e 6

2.2, Controlling LOOKUPT@DIESIZEccooiviiiriiis s secisisneseensinne s 7

3. Implementationo.0e... Frente e h ot heehe st h bt et eh e st eheeh b eh s et sote e bser e r e e b bean e 8
1L TheFOMSTADIEooovviieeeiit e bttt 8

3.2. TheSEACN COUR ..c.ovivivie ittt e bbb b 9

3.2.1. Search Control AIGOFthMocmviiirieicii s 10

3.2.2. Evaluation Of @aFOMMc.ccovivieiiinirine et 11

3.3. U2 of Cogt INFOIMELION ... v 12

3.3.1. Default Vs, Undefined SEMANtiCSco.vevieervernniiciinninrarnsicnisecininnes 12

3.3.2. Handling Callisions T O PP PT USSP RTPSUT PP 13

AURESULILS ,..\\iiioteeeeeiieseessessesesesseeaes st s itssessansestess b osbes s eatestatte st tethes st s b e e st serbs st b e b esaanebe s eereeen 14
A1, EXBMPIECESES ..ot s s e s 14

4.2, PerformanCe SLAISICScvveviviviinisiercen st 17

4.2.1. HF/CFHF Search for Random Mappingscccccvinnnn. e e 17

4.2.2. HF/CFHF Search for MappingSwith RUNS..........ooocccomvinincniinin 21

4.2.3. A Target Machine with Population Countc.evviivcmiiminininns 23

o 0 410 11T 10 T 25

Page 28

	Purdue University
	Purdue e-Pubs
	7-1-1992

	Coding Multiway Branches Using Customized Hash functions
	H. G. Dietz

