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Abstract 

In most modem languages, there is a construct that allows the programmer to directly 
represent a multiway branch based on the value of an expression. In Pascal, it is the case state- 
ment; in C:, it is the switch and in Fortran-90 the SELECT. However, it is quite common that 
the efficiency of these constructs is far worse than one might reasonably expeat. This paper 
discusses the construction and use of customized hash functions to consistently improve execu- 
tion speedl and reduce memory usage for such consuucts. Performance results are given, includ- 
ing some that lead to the suggestion that adding a population count instruction to the instruction 
set of a processor will greatly improve its hashing performance. 

Keywords: multiway branches, hashing, compiler design, Pascal, C, Fortran-!%, population 
count. 
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Multiway Branches 

1. Introduction 

Before discussing how compilers might code multiway branches, it is u& to review the 
constructs as they arr defined in nurent high-level languages. In particular, we will consider the 
multiway branch constructs of Pascal [JeW75]. C [KeR78] [ANSW], and Foman-90 [ANS891. 
As a simple example, we will consider code that selects and executes one of four subroutines 
determined by an integer baud, which has the value 110, 300, 1200, or 9600. "The simplest - 
and most constrained -type of multiway branch is that specified by Pascal: 

care baud of 
110: a ( ) ;  
300: b ( ) ;  
1200: c o ;  
9600: d o ;  

end 

Listing 1: Simple Pascal case 

The above Pascal case statement is defined to perform exactty one of the submutine calls. The 
definition of Pascal explicitly states that the effect of the above construct is undefined if the value 
of baud is not one of those listed1. Hence, the compiler is free to generate code based on the 
assumption that the value of baud must be one of the listed values. 

In contrast, the C switch and Fox-tm-90 SELECT are defined to e,xplicitly filter-out 
values that are not listed, and to make these values invoke a "default" action. In both C and 
Fortran-90, the default action is implicitly to skip over the entire construct, but a user-defined 
default action may be supplied: 

switch (baud) ( 
case  110: a ( )  ; break; 
case  300: b ( )  ; break; 
case 1200: c ( )  ; break; 
caoe 9600: d() ; break; 
defaul t :  error ( )  ; 

1 

Listing 2: C switch 

- 
' The same semantics apply to the multiway branches generated by an optimizing coml?ilm when fine- 

grain parallelization of a program merges multiple ordinary branch instructions into a single rnultiway branch 
[BrN90] [Die92]. In these compiler-generatod multiway branches, the "case" values are Mt vectors; each 
vector represents a possible set of truelfalse sequential branch decisions. 
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SELECT CASE (BAUD) 
CASE (110) 

CALL A ( )  
CASE (300)  

CALL B ( )  
CASE (1200) 

CALL C ( )  
CASE (9600) 

CALL D ()  
CASE DEFAULT 

CALL ERROR ()  
END SELECT 

Listing 3: Fortran-90 SELECT 

Although this relatively subtle semantic extension beyond the Pascal construct significantly 
increases the cost of the construct, it is generally agreed to be worthwhile. Many dialects of Pas- 
cal have teen extended to allow default cases. However, this distinction is important, and this 
paper will distinguish between the treatment of unlisted values as undefined versus default. 

Anolther important obsewation about the semantics of multiway branch constructs is that 
multiple values may select the same block of code. For example, suppose that 110 imd 300 are to 
select the same function: 

c a s e  baud of 
110: 
300: e (); 
1200: c ( ) ;  
9600: d o ;  

end 

Listing 4: Shared cases in Pascal 

s w i t c h  (baud) { 
c a s e  110: 
c a s e  300: e ( ) ;  break; 
c a s e  1200: c ( ) ;  break; 
c a s e  9600: d o ;  

1 

Listing 5: Shared cases in C 
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SELECT CASE (BAUD) 
CASE (110, 300) 

CALL E ()  
CASE (1200) 

CALL C ()  
CASE (9600) 

CALL D ()  
END SELECT 

Listing 6: Shared cases in Fortran-90 

Aside from being a notational convenience and helping to avoid replicating code, the mapping of 
multiple ;selection values into a single block of code yields an interesting additionad benefit when 
combinecl with the unlisted-undefined (Pascal) semantics. Simply stated, if 110 and 300 map into 
the same code address, then there is no need to distinguish between them. This effectively gives 
the searcll for a mapping another degree of freedom, and hence makes mappings easier to find. 

A related semantic extension is supported by C, in which actions are alllowed to "fall 
through" unless break statements are used to mark the end of each case: 

s w i t c h  (baud) { 
case 110: a ( ) ;  
case 300: b ( )  ; 
case 1200: c ( ) ;  b reak ;  
case 9600: d ( ) ;  

1 

Listing 7: C case Fall-Through 

would cause the value 110 to select execution of a ( ) , b ( ) , and c ( ) ,300 would select b ( ) 
and c ( ) , etc. However, this apparently dramatic diffennce has no impact on the mapping used 
to select the correct action, but merely omits some "jump" (break) instructions that would 
mark the ends of the actions. Thus, we can ignore this semantic difference without loss of gen- 
erality. 

A more significant extension of the multiway branch semantics appears in Fortran-90, in 
which intervals may be used to select actions. For example, all values between 110 and 300 
(inclusive:) would select execution of F ( ) in: 

SELECT CASE (BAUD) 
CASE (110:300) 

CALL P() 
CASE (1200) 

CALL C ( )  
CASE (9600) 

CALL DO 
END SELECT 

Listing 8: Fortran-90 Interval CASE 
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Treatment of these range expressions was discussed briefly in [Sa181]. Given large ranges, it is 
clear that ilk range expression itself is the most compact way to specify the mapping;; given small 
ranges, we: suggest that the range notation be used as a shorthand, and that the ~mge's values 
should be c:numerated to define the mapping. With this transformation, we may also ignore range 
operators without loss of generality. 

Finally, it is useful to note that some languages, such as P I 4  and Ada, hdve multiway 
branch coi~structs that do not require the selection values to be compile-time constants. Clearly, 
if the values are not constants, it is generally impossible to define an efficient mappi:ng at compile 
time. However, it is possible to recognize when all values listed as selectors in a consuuct are 
compile-time constants, and then to treat that particular instance much like the C or Fortran-90 
construct. The same detection algorithm can also be applied to mat a sequence of i f  state- 

ments as if it had been written using the C or Fortran-90 multiway branch. For exzunple, assum- 
ing that baud is not modified by a ( ) , b ( ) , c ( 1 , and d ( ) , any of the following C codes 
can be mechanically transformed into a single C switch: 

if (baud -- 110) a ( ) :  
else if (baud -- 300) b 0 ; 
else if (baud -- 1200) c 0 ; 
else if (baud -- 9600) d ( )  ; 

Listing 9: Nested i f  

if (baud -- 110) a(): 
if (baud -- 300) b ( )  ; 
if (baud -- 1200) c 0 : 
if (baud -- 9 600) d ( 1  ; 

Listing 10: i f  sequence 

if (baud < 1200) 
i f  (baud -- 110) a ( )  ; 
else if (baud -- 300) b 0 :  

else if (baud -- 1200) c 0 ;  
else if (baud -- 9600) d o :  

Listing 11: i f  Tree 

2. Approach 

Tcaditionally, multiway branches have been implemented by linear sequences or trees of 
comparisons and jumps or by jump tables. An excellent overview of the issues involved in using 
these encodings is given in [SalSl]. A clever combination of range checking and use of multiple 
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jump tablies is presented in [HeM82]. The selection between these various types o:€ encodings in 
a compiler for PL.8 is discussed by [Ber85]. 

However, although the comparison and jump end ings  are familiar in that they represent 
how a multiway branch might be encoded using only i f  statements, there is no reason to restrict 
a multiwa~y branch to be encoded in that way. A similar comment applies to the use of a jump 
table; just because early multiway branch constructs, such as Fortran's "computed GOTO," were 
designed to be implemented directly by jump tables does not imply that the more general modem 
multiway branch should be implemented in that way. 

A more fundamental way to view the multiway branch constructs outlined iin section 1 is 
that any nnultiway branch construct defines a mapping whose domain is the set of se:lector (case) 

values and whose range is the set of code addresses that are the jump targets. 'Thus, the best 
encoding of this mapping is the best encoding of the construct. In computer termi~~ology, such a 
mapping is simply a hash function. 

The basic concept of a hash function is very simple, but the practical matter of generating 
good, low-cost, functions implementing particular mappings is surprisingly complex. A number 
of techniques have appeared in the literature on finding hash functions, but these !techniques are 
all based on the fundamental assumption that all the hash functions searched will 'have the same 
fonn, i.e.,, all mappings would be implemented by the same computation except for changes in a 
few constants. It is our claim that the assumption of a particular form will often result in a far 
more costly hash function than can be achieved if the form can be varied. Thus, our approach is 
based on searching for the minimum cost hash function among a wide range of fo:rms that differ 
algorithmically, as well as by the values of constants. 

2.1. Searching Multiple Forms 

In s;pirit, our approach is most similar to that of the "Superoptimizer" [Mas8'7] - a system 
which attempts to find a functional equivalent to a given instruction sequence by searching all 
possibly ~~seful  instruction sequences in order of increasing cost (increasing length of instruction 
sequence:,. This is done using self-modifying code to construct each test coding. To determine if 
the same function is implemented by the reference encoding and the coding under test, each pos- 
sible input is evaluated by both and the results are compared. If the outputs differ, the test func- 
tion is immediately rejected and the search continues with the next test coding. If all outputs 
match, the coding under test is reported as the solution. Thus, the Superoptimizer rnay be viewed 
as searching for the least expensive hash function that will map each value in the dlomain into its 
companding value in the range. The primary difficulty is that such hash  function!^ are very rare, 
hence the search can take a long time and can generate excessively expensive instruction 
sequences. 

The fact that the Superoptimizer can generate excessively expensive instrucl:ion sequences 
seems to contradict the claim that it searches all possibly useful instruction sequences. In fact, 
this is not contradictory; ignoring any failings of a particular Superoptimizer's implementation, 
the cheaper instruction sequences missed involve the use of data- and the Superoptimizer 
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excludes constructions like lookup tables. Consider the example function from [:Mas871 that 
maps each domain value do E {0, 1 ,  2, ..., 99) into t r u n c  (do / 1 0 ) .  The Superoptim- 
izer sequence is 7 instructions long, but a 100-element lookup table trivially implements the same 
function using just 2 instructions. In other words, we need not find a function that directly pro- 
duces the correct range value for each domain value. It is sufficient to find any collision-f ee 
hash funcltion (CFHF') - i.e., a function that never maps two domain values into the same range 
value unle:ss they have the same range value for the reference function. Given such a hash func- 
tion, the reference function values are simply looked-up in a table indexed by the haoh function. 

CFHFs are much more common than hash functions that implement mappings without the 
use of a lookup table. Thus, search time should be correspondingly lower. It is also possible that 
the search space can be reduced so that only a select group of forms is considered; this may also 
allow those forms to be built into the search program, rather than constructing thelm using self- 
modifying code. 

2.2. Contlrolling Lookup Table Size 

The Isey problem in using a CFHF with a lookup table is that the index values (:an be sparse, 
requiring ;an impractically-large table. Indeed, if the size of the lookup table is ignored, the 
minimum cost hash function, HASH ( n )  , is always to use n-min(domain) to di~lectly index a 
lookup table whose size is proportional to max(domain)-min(domain)+l. Using su.ch a scheme, 
the table fior any of the trivial multiway branch examples in Section 1 would have 9600-1 10, or 
9490, elements. 

To minimize the size of the lookup table, we wish to find a hash function which, for a par- 
ticular domain containing Jdomainl items, maps the elements one-to-one and onto the integer 
range (0, 1,  2, ..., Idomainl-1). Such a function is called a (minimal) perfect hash function, 
and can be used to implement any mapping from that domain with a table of size Jdomainl. 

Although our tool will attempt to find a (minimal) perfect hash function with a table of size 

N, a funcltion to perform this mapping might be hard to find and expensive to evaluate. By 
sacrificing the requirement that the function be onto, we greatly increase the probability that an 
appropriate function can be found. Such a mapping takes the domain into {O, 1,  2,  ..., 
(domainl+ k)  , where k2- 1, and all range values that are not mapped into by any doniain value are 
"don't ca~%" states, harmless except in that they consume memory space. Of course, it is neces- 
sary to consider timelspace tradeoffs, since the number of don't care states could become very 
large and ;available memory space is always limited. One could even argue that caches and paged 
memory systems probabilistically make lookup time proportional to table size for large tables, so 
that eventually the cost of indexing the table would outweight the cost savings for the simpler 
hash function. In any case, some cost must be associated with the size of the data. 

All of the above refers to collision-free hash functions. In addition, our tool takes advan- 
tage of two properties of collisions in order to speed the search and create cheaper hash functions. 
The first is that if the (domain(>lrangel for the reference function, then the lookup table might be 
as small a s  Irangel. In other words, we will accept hash functions that have collisions provided 
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that the domain values that collide have the same range values in the reference function. The 
second i;s the observation that disambiguating between domain values that collided only has a 
cost when the domain value being hashed is one involved in a collision. For r:xample, if we 
assume ithat all domain elements are equally probable as input, ldomainl=100, and only two 
domain values collide, then the cost of the comparisons (or of a secondary hash fimction) to dis- 
tinguish between those values is encountered only about 2% of the time. Thus, *e expected cost 
for a hash function with collisions might well be less than that of a more complex hash function 
which h i ~  no collisions; the expected cost of disambiguating collisions is incorporated into the 
cost estimate for each hash function considered. 

3. Impbementation 

As a proof of concept, we have implemented a system that attempts to find the minimum 
cost has11 function to perform any given mapping. This system consists primarily of a set of C 
and AWK programs that automatically generate a C program that will find appropiate hash func- 
tions to implement any mapping. The search program takes full account of the machine- 
dependeint costs of different forms for the target architecture, and need not be executed on the tar- 
get maclzine; for example, all the results presented in this paper were obtained by running the 
searches on a 16,384-processing element SIMD supercomputer (a MasPar MP-I [BlagO]), since 
that allowed a much larger set of fonns and parameter values to be considered. 

3.1. The Forms Table 

To simplify customizing the set of forms searched, the forms are given by a table specifying 
all the form-dependent information. Each line in this table specifies a form: 

The first field is the "Formula," i.e. actual C code that will compute HASH (n) . The 
formula also may be parameterized by one immediate (constant) value called i. 

The next two fields specify the "Min" and "Max" values for i in this formula; the 
form is considered for each integer value of i between Min and Max ('inclusive). The 
Min and Max can be specified as absolute values or a functions of various attributes 
derived from the mapping, such as logmax, the log2 of the largest value: in the domain. 
If the formula is not parameterized, then MinsMaxd. 

The fourth field is a symbolic C expression for the execution "Cost" of the form as a 
function of i. For pruning the search, it is assumed that as i is increased from Min to 
Max, the Cost is non-decreasing. 

The final field describes how to "hint*' the form. In the current versiion, this is sim- 
ply a set of arguments to print f ( ) to output the C code for the form selected - 
and is somewhat redundant in that the first field provides essentially the same infor- 
mation. However, this last field is separated-out so that it would be easy to modify the 
search program to generate machine-specific assembly code. 
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For example, using the results reported in table 2, we can construct a forms table describing only 
those form!; which were selected as optimal in implementing at least one of the test mappings for 
the Sparc processor. The resulting forms table is given as Table 1. 

Formulib Min Max Cost Print 
n>>i 1 logmax N+SHR (i) +I lln>>%dll , 1. 
n 0 0 N 1 1 ~ 1 1  

(n>>i) *n 1 logmax N+SHR (I) +I+XOR+N " (n>>%d) *ntl, i 
(n>>(n&i) ) 1 logrnax N+SHRN+N+AND+I 'I (n>> (n&%cl) ) ", i 
(n>>i) +n 1 loqrnax N+SHR (i) +I+ADD+N (n>>%d) +n", i 

(-n) >>i 1 logmax NEG+N+SHR (I )  +I (-n) >>%dlv, i 

Table 1: Sample Forms Table for Sparc 

Notice that the forms given are missing a final step which ensures that the table bounds are 
not exceeded by using modulus. There are two reasons for this omission. First, this final step is 
common to all forms, hence, it can be assumed. Second, the operation used is only a true 
modulus if' the table size is not a power of two; power of two table sizes are handledl by masking, 
and generimy at lower cost than using modulus. This adjusrment is made automastically in the 
search p~rogram. Thus, the formula n is actually either (n) %SIZE with cost 
N+MOD (SIZE) +I or (n)   MASK^ with cost N+AND+I, depending on whether SIZE is a 
power of two. 

It is ~~sefuZ to further note that the Cost field expressions are not in terms of arbitrary names. 
Rather, a C program was constructed to experimentally determine approximate relative times for 
a variety of basic operations. When run on the target machine, the output of that C' program is a 
set of #dlef ine directives that give the relative execution times for each of the baslc operations. 
For example, the Sparc ratio between cost of ADD and cost of MULN was measun:d as 90:2323 
(i.e., multiply is about 26x the cost of an add) - which explains why multiply operations are 
rarely useti in the forms chosen as optimal for the Sparc. 

33. The Search Code 

A pure C program is constructed to efficiently search for the lowest-cost mapping. There 
are two basic algorithms involved in the search; one that guides the search ovedll and another 
that is applied to evaluate each form. 

Where MASkSIZE-1. 
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33.1. S~zarch Control Algorithm 

Thiere are several dimensions to the search for a hash function. Not only must the correct 
form be selected, but we also must find the correct parameter value and size of the hash table. 
There are many ways in which this could be done, however, some techniques p~vne the search 
space faster than others. We do not attempt to optimize the search order, but we do employ a few 
heuristics to improve it. We search power-of-two table sizes first because they use masking 
rather than modulus instructions, and the lower cost of masking tends to prune the search faster. 
In addition, searching smaller tables first tends to prune faster because there is less memory use 
cost. The overall algorithm is: 

1. Set bestcost = cost of the best conventional encoding. 
(E.g., only want functions cheaper than optimal binary search.) 

2. Set cursize = the least power of 2 2 Irangel. 

3. Set maxsize = (bestcost / cost per unit of memory use) - 1. 
(As big as the hash table can be before the table size itsef makes some other function 
cheaper.) 

4. If cursize > maxsize then goto 8. 

5. For each form, use the form evaluation algorithm to find cheapest for hash table of 
size cursize. 
( I f  a new best is found, bestcost is updated, thus steps 3 and 4 may prune the search 
earlier.) 

6. Set cursize = cursize * 2. 

7. Got0 3. 

8. Set cursize = Jrangel. 

9. Set maxsize = (bestcost /cost per unit of memory use) - 1. 

(As big as the hash table can be before the table size itserrnukes some other function 
cheaper.) 

10. If cursize > maxsize then done. 

11. If cursize is a power of two then goto 13. 

12. For each form, use the form evaluation algorithm to find cheapest for hash table of 
size cursize. 
( I f  a new best is found, bestcost is updated, thus steps 9 and I0 may prune the search 
earlier.) 

13. Set cursize = cursize + 1. 

14. Goto 9. 
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33.2. Ev Juation of a Form 

Two simple AWK scripts are used to convert the table of form descriptions into pure C 
code to eva~luate the cost of using each form to implement the desired mapping. One script gen- 
erates a C function that searches for the lowest cost form for a table size that is not a power of 
two; the otlher handles only power of two table sizes. In either case, the evaluation of each form 
is done by rthe same algorithm. 

To evaluate each form, the hash function for each parameter value for that form is applied 
to hash all the domain items, and a hash table is used to detect conflicts. Rather than resetting 
(clearing) the table before each function is tested, we use a serial-numbering scheme to ensure 
that hash table entries made when trying the form for this value of i have values that do not over- 
lap those made for any other value of i. The algorithm is: 

1. Set i = Min for this form. 

2. If i > Max then done. 
(The complete set of possible parameter values has been checked.) 

3. Set cost = cost of memory use + execution time cost of this form for the parameter i. 
(Memory use cost accounts for table size.) 

4. If cost 2 bestcost then done. 
(This prunes based on the fact that the cost of a form is non-decreasing as i is 
increased.) 

5. Set serial = serial + (rangel. 
(Get a new base serial number for table entries.) 

6. For each value d E domain do: 

a) Set h = HASH(d), r = serial + position of mapping(d) in range. 
(HASH() is the computation given by the formula, with either the modulus or 
masking included.) 

b) If table[h] < serial then go to step f. 
(This table entry was empty.) 

c) If table[h] at r then continue with the next loop iteration. 
(This table entry already maps to the desired value.) 

d) Set cost = cost + cost of a collision. 
(The hash of d was the same as the hash value of some d' such thlm mapping(d) 

+ mappingfd').) 

e) If cost 2 bestcost then exit the for loop. 

f) Set table[h] = r. 
(Reserve hash table eniry h for mappingfd).) 

7. If cost < bestcost then record this form as the new best and set bestcost - cost. 
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8. Increment i. 

It is significant that the above algorithm is also trivially adapted for a SIMD (Single Insuuction 
stream, Pdultiple Data sueam) parallel search. Indeed, two more AWK scripts vvere created to 
generate MPL [Mas911 programs to perform the parallel search on a 16,384 proclessing element 
MasPar MP-1 supercomputer [BlagO]. The only changes to the form evaluation algorithm 
involve declaring a few variables as parallel (p lu ra l ,  in MPL) and changing a few algorithm 
steps: 

1. Set i = Min for this form + the current processing element number. 

7. If cost < bestcost and cost for this processing element is the lowest then record this 
processing element's form as the new best and set bestcost = cost for the processing 
element. 

8. Set i = i + the number of processing elements. 

Notice that since the MasPar MP-1 has 16,384 processing elements, there rnay be up to a 
16,384-uray tie for the lowest cost in step 7. Hence, the parallel version may select a different 
parameter value (i.e., value of i) from that found by the sequential search. To fiorce consistent 
behavior, our MasPar code will always resolve such a tie by taking the lowest parameter value - 
exactly as the sequential search would. 

How much speedup did we get? That depends greatly on the forms used. :SMD parallel- 
ism in the above is not across forms, but rather across groups of up to 16,384 different parameter 
values. For the forms listed in table 1, the maximum possible parallelism is the lagz of the max- 
imum domain value - presumably, 32 or less. In such a case, the MasPar yields a speedup of 
less than two over a modem workstation (e.g., a Sparc). In contrast, some forms have parameters 
that span1 millions of values, in which case the MasPar often provides a speedup of a thousand or 
more. A.s discussed in section 4.2, it took many long runs on the MasPar to demonstrate that 
omission1 of most of the forms would have relatively little impact on the cost of the best form 
found. In other words, the speedup is irrelevant; we simply used a supercompiuter to quickly 
determine the set of forms to use for a production version of the system that can easily run in rea- 
sonable lime on a workstation or PC. 

33.  Use of Cost Information 

Although the search and form evaluation algorithms do not seem to direcitly manage the 
various semantic differences noted in section 1, the system actually does take these differences 
into accc~unt. All of these variations are handled simply by adjusting the cost computations. 

33.1. Default Vs. Undefined Semantics 

Given a CFHF, we have the complete implementation of the undefined semantics for values 
not E domain, All the hash functions generated by the above scheme will take any input and map 
it into some table entry; to implement default semantics, we must simply test if  the value that 
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mapped into this table entry is actually the domain member that was intended to map there. For 
example, for the Sparc the cheapest CFHF for the domain (1 10,300, 1200,9600) -was the func- 
tion ((n>>7)&3). This maps 110 into 0, 300 into 2, 1200 into 1, and 9600 into 1;; however, it 
would also map 2400 into 2. Thus, we insert code for each hash value to check: if the value 
hashed was the domain value intended. I.e., code something like: 

t a b l e :  d a t a  r110 ,  r1200,  r300 ,  r9600  

r <- ( (n>>7) 63 )  ;compute h a s h ( n )  
jump t a b l e  [ r ]  

r110:  i f  (n  ! -  110)  g o t o  d e f a u l t  
case f o r  110  ) 

r 3 0 0 :  i f  (n  !- 300)  g o t o  d e f a u l t  
[ c a s e  f o r  300 ) 

r1200:  i f  (n  !- 1200)  g o t o  d e f a u l t  
{ case f o r  1200  1 

r9600:  i f  ( n  1 -  9600) g o t o  d e f a u l t  
[ c a s e  f o r  9600 ) 

Listing 12: Handling Default Semantics 

The cost overhead for this treatment is easily predicted, since it is simply the execution time of 
one compare and jump plus the memory use penalty associated with the code implementing these 
compares and jumps (usually, a few words for each domain element). Adding these costs, no 
other changes need be made to the search algorithm. 

The CFHF above used all hash values. If there were some hash values that no domain ele- 
ment mapped into, the additional compares and jumps would be omitted for those hash values 
and the jump table entry would lead directly to the default. Thus, this can also be effectively 
modeled by simply adding the appropriate cost, which is always the compare and jump cost times 
Idomain). 

If the I-IF found is not a CFHF, there will be additional overhead in handling the collisions 
as discussed in the next section, but nothing else is different. 

33.2. Handling Collisions 

As written above, the algorithm seems to find an HF which is not necessruily a CFHF. 
Surprisinj~ly, all the variations on the handling of collisions are implemented by simply changing 
the cost associated with a collision, as applied in step 6d of the form evaluation algalrithm. 

If we wish to obtain an HF which minimizes expected runtime, it is somewhat surprising 
that disambiguating conflicts caused by a simple hash function is often cheaper than using a more 
sophistica.ted hash function that has no conflicts. The reason is simple. Suppose that K of the 
ldomainl values in the domain of the mapping cause conflicts. Whenever one of those K values is 
hashed, vrre will need to perform some additional tests - linear search, an optimized binary 
search, or even a secondary hash function. Whichever we choose, the memory use cost is trivi- 
ally com]~uted and the execution cost is simply the expected cost of executing the additional 
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instruction sequence. Note that even a high cost method (e.g., linear search) tends to have a very 
low expected execution cost because the number of items searched is rarely mon: than two and 
the prob;lbility of executing the additional search at all is only KtldomainJ, which is typically less 
than IOCX;. The current version assumes that an optimal binary search will be used. to disambigu- 
ate collisions; the probability used to weight each execution cost is Wldomainl for each collision. 

Further, suppose that we wish to ensure that only a CFHF will be selected. ,921 we need do 
is make lhe weighted cost for a collision 2 the cost for the best CFHF found thus far. 

4. Resullts 

In order to test the effectiveness of the above approach, we conducted two *parate types of 
tests. Tlhe first involved taking the example cases presented for previous coding techniques, 
determining the optimal hash encoding, and then comparing the previously published result with 
our result. The second involved taking a large, hopefully statistically significant, :set of mechani- 
cally ge12emted test problems and observing the performance of the search algorithm and the 
solutionr; found. 

4.1. Exr~mple Cases 

In order to support a direct comparison with previous work, in this section we present the 
lowest-cost encodings our system found for the same example cases that appeared in [HeM82]. 
The cosrs we used are those reflecting the measured performance of a Sparc processor and the 
unspecified case values are treated as undefined (the standard Pascal interpretation). 

Our first example, shown in listing 13, is the one used by [HeM82] to illustrate a Pascal 
case statement with case values that are too sparse to make a jump table implen~entation effec- 
tive. A:; per Sale's paper [Sal81], it is suggested that the best encoding is an optimal binary 
search. However, our system easily found hash functions with lower time and space wst. The 
CFHF found by our system if all domain elements must be mapped to unique hash values is given 
in table 2. However, our system can find even cheaper solutions by allowing domain elements 
that map into the same range value to "share" the same hash value. The cheapest such function 
also is given in table 2. 

case J of 
3, 5 ,  4 :  s t m t l ;  
100: s tmt2 ;  
200: stmt3 

end 

Listing 13: Pascal case from [HeMS2] 
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HASH (J) -0 
HASH (J) -1 
HASH ( J )  -2 
HASH ( 5 )  -3 
HASH ( J )  -4 
HASH (5) -5 
HASH (J) -6 
HASH (J) -7 

{ 1 0 0 : s t m t 3 )  HASH(J)-0 { 3 : s t m t l ,  4 : s t m t l ,  5:stmtl) 
{ Z O O :  s t m t 4 )  HASH (J)-1 - 
- HASH(J)-2 { Z O O :  s t m t 3 )  
I 3 : s t m t l )  HASH(J)-3 { 1 0 0 : s t m t 2 )  
{ 4: stmtl) 
I 5 : s t m t l )  

Table 2: CFHF and CFNF with Sharing for Listing 13 

The other example from [HeM82], as shown in listing 14, involves a case statement 
whose case values occur in a series of "runs." This is precisely the type of construct Hennessy's 
paper attelmpts to optimize, by using a set of range tests .and multiple jump tables (one for each 

case K of 
1 : 
2 : 
3 : 
4 : 
5 : 
6 : 
7 : 
8 : 
1001:  
1002:  
1003:  
1004 : 
2001: 
2002: 
2003: 
2004: 

end 

s t m t l ;  
s t m t 2 ;  
s t m t 3 ;  
s t m t 4 ;  
s t m t 5 ;  
a tmt6 ;  
s t m t 7 ;  
s t m t 8 ;  
s t m t 9 ;  
s t m t l 0 ;  
s t m t l l ;  
s t m t l 2 ;  
r t m t l 3 ;  
r t m t l 4 ;  
stmtl5; 
s t m t l 6  

Listing 14: Pascal case with Runs from [HeM82] 
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HASH (K)i (K631) 

HASH(K)-0 - 
HASH (K) -1 (1 : stmtl} 
HASH(K)-2 (2:stmt2} 
HASH (K) -3 (3 : stmt3 1 
HASH(K)-4 (4:stmt4} 
HASH (K) -5 (5: stmt5) 
HASH(K)-6 (6:stmt6) 
HASH (K) -7 {7 : stmt7 ) 
HASH(K) -8 (8:stmt8, 2001: stmtl3) 
HASH (K) -9 (2002: stmtl4 ) 
HAsH(K) -10 (2003:stmtl5) 
HASH(K)-11 (2004:stmtl6) 
HASH(K)-12 (1001:stmt9) 
HASH(K) -13 { 1002:stmtlO) 
HASH(K)-14 (lO03:stmtll} 
HASH(K) -15 (1004:stmtl2} 

HASH (K)-0 - 
HASH (K) -1 (1: stmtl} 
HASH (K) -2 ( 2: 8tmt2 I 
HASH(K)-3 (3:stmt3} 
HASH(K)-4 (4:stmt4) 
HASH(K)-5 (5:stmt5) 
HASH (K)-6 (6: stmt6) 
HASH (K) -7 (7: stmt7) 
HASH(K)-8 (8:stmt8) 
HASH (K)-9 (1001:stmt9] 
HASH(K)-10 (1002:stmtI.O) 
HASH(K)-11 (1003:stmtI.l) 
HASH (K) -12 ( 1004 : stmtl.2) 
HASH(K)-13 - 
HASH(K)-14 - 
HASH (K)-15 - 
HASH (K)-16 - 
HASH (K) -17 (2001: stmtl.3) 
HASH(K) -18 (2002 : stmt!,4) 
HASH (K)-19 {2003:stmtll5) 
HASH (K) -20 {2004:stmt:L6) 
HASH (K)-21 - 
HASH (K)-22 - 
HASH (K)-23 - 
HASH(K)-24 - 
HASH(K)-25 - 
HASH(K)-26 - 
HASH (K) -27 - 
HASH (K)-28 - 
HASH(K)-29 - 
HASH (K) -30 - 
HASH (K)-31 - 

Table 3: HF and CFHF for Listing 14 

As one might suspect, it is relatively difficult to find CFHFs when there are rnultiple runs in 
the case values3. The cheapest HF found for this particular data set was not a CFHF, but the HF 
given in table 3. Case values of 8 and 2001 both hash to the same table entry (hash value 8). 
Thus, allthough hash values other than 8 can directly jump to the appropriate statement, the hash 
value 8 case must jump to an instruction sequence that tests to see whether the value hashed was 
8 or 2001, and then jumps to the appropriate location. Fortunately, the additional execution time 
of this comparison only has a 2/16 probability of occurring, so it is easy to see that the HF is both 
faster and smaller than an implementation using range tests to choose between multiple jump 
tables. 

By changing the apparent cost of a collision (as discussed in section 3.3.2). we forced our 
system l;o find the lowest cost CFHF for the case statement of listing 14. The result is the 
remarkably simple CFHF given in table 3. In fact, the CFHF in table 3 is so simple compared to 
the HF in table 3 that it is difficult to see how the HF could have lower cost. The answer is 

In fact, this observation inspired the additional set of tests presented in section 4.2.2. 
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simply that despite a more complex hash function and one collision, the HF is cheaper than the 
CFHF beciause the HF uses a much smaller hash table - i.e., it uses far less memory space. 

Although our system will not always find a cheaper implementation, it did find one for 
every non..trivial example in the papers cited. The success rate would be reduced if we applied 
the unspecified+default semantics, as used in C and Fortran-90, but that effect. is relatively 
small. Thr~s, the system was given a "stress test" to determine what its limits are. 

43. Performance Statistics 

The MPL, (SIMD parallel) version of our system was used to find hash functions for a wide 
variety of test cases. The MPL version was used because it runs on a 16,384-processing element 
MasPar MP-1 supercomputer, hence, we were able to consider an abnormally wide variety of 
forms. 

Since the pruning of the search depends heavily on the relative costs of forms, it is also 
important to determine how the system performs for a variety of target machines. Three common 
pmssor:; and one idealized processor were selected as targets: 

Intel 386sx. Selected for its popularity as a CISC microprocessor, used primarily in 
Pds. 

Sun Sparc. This was selected as an example of a RISC processor, typically used in 
UNIX workstations. 

MIPS R3000. Selected as a second example of a RISC processor, also used in UNIX 
workstations. 

Super. An idealized processor whose characteristics approximate those: of processors 
used in supercomputers. 

For each ,real target machine, the relative costs for different types of instructions were empirically 
determined using the C program described in section 3. 

43.1. H:I?/CFHF Search for Random Mappings 

To determine how the system performs, a set of 1,280 random mappings were created. The 
(domain( was from 2 to 128 values, each of which was between 0 and 65,535 inc:lusive. Range 
values were randomly selected between 0 and (domain(-1, inclusive. Each mapping was con- 
sidered both with and without sharing of hash values, for a total of 2,560 input ]mappings. All 
2560 input sets were used to find the cheapest HF and the cheapest CFHF for each of the real tar- 
get archi1:ectures. In each case, 142 forms and millions of parameter values were considered. 

Figure 1 shows the average relative cost for the cheapest HF (not necessarily a CFHF) 
found ve.rsus a traditional optimal binary search. The rather surprising results show approxi- 
mately a 4x improvement (reduction to about 0.25 cost). The cost is low even for very small data 
sets prim.arily because the data sets with sharing allowed often have near zero cost for small data 
sets; even without sharing the cost is often low because the table uses less me:mory than the 
instructions implementing binary search. The jagged waveform pattern is due 1:o the fact that 
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power-of-two table sizes have a significant cost advantage in that they use masking rather than 
modulus to confine hash values to the table size. 

- - - -  MtPSR3000 

........ Intel 386sx 

- SunSparc 

(Domain1 

Figure 1: HF Relative Cost for 386sx, Sparc, and R3000 

Clearly, a significant performance increase was obtained. However, the use of HFs instead 
of CFHlFs requires insertion of comparisons to disambiguate where collisions occur, and this 
comp1ic;ates the coding. Thus, it is useful to consider what the performance \vould be if we 
required the HFs to all be CFHFs. The results of this m shown in figure 2. 'me remarkable 
similarity between figures 1 and 2 is due to the fact that the cheapest HF found is often a CFHF. 
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- - - -  MIPS R3000 

........ Intel 386sx 

Sun Sparc 

Figure 2: CFHF Relative Cost for 386sx, Sparc, and R3000 

The next obvious question is how long did it take to find these functions? 'This is a very 
difficult cluestion to answer, since it depends greatly on how many forms are amsidered and 
might depend heavily on the particular mappings searched for. The absolute s e a m  times for a 
large set (of forms using the MasPar MP-1 supercomputer are relatively meaningless, however, 
the trends are significant. Figures 3 and 4 show, respectively, the average time taken (in seconds) 
to find the cheapest HF and to find the cheapest CFHF. 

As t:xpected, search times grow slowly as larger domains are considered and searching for a 
CFHF generally takes longer than searching for an HF. For the HF search, there is a dip in search 
time whein Idomain) is slightly greater than a power of two - presumably because a very cheap 
solution is likely to be found very early in the search when the next largest powe:r-of-two table 
size is coinsidered. There is a similar jagged pattern in the CFHF search times, but the pattern is 
obscured by the fact that there is more variation in CFHF search times, especially as ldomainl gets 
large. 
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: Intel 386sx 

I , MIPS R3000 . I 

Sun Spm: 

Figure 3: HF Search Times for 386sx, Sparc, and R3000 

- - - -  MIPS R3000 

.. ...... Intel 386sx 

Sun Sparc 
. . . . 

Figure 4: CFHF Search Times for 386sx, Sparc, and R3000 

Allthough the MasPar MP-1 times are not directly useful, there is an additional benefit: by 

trying so many (142) forms and mappings, we can be relatively certain that all useful forms will 
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be used at least once. Thus, to create a "production" case-statement coder, we need only 
search the forms that the massive tests on the MasPar MP-1 have shown to be useful for that 
machine. Over all 7,680 hash functions found for these three target machines, only 13 of the 142 
forms tried, were selected as optimal. These are listed in table 4. For the 386sx, 13 forms must be 
searched. :For the R3000, only 7 f o n s  are needed; for the Sparc, it is just 6. Most of these forms 
also have s;mall parameter search spaces. 

Times Form Selected 
a Lowest Cost HF Lowest Cost CFHP Formula 1 

1 IOlaJ  386sx r3000 Sparc 386sx r3000 Sparc 
1 6916 11 1049 1 1161 1 1206 11 1084 1 1207 1 1209 (1 (n>>i )&luSK 

Table 4: Lowest-Cost Forms Selected for Random Mappings 

No& that in every case our system found a hash function whose cost was lower than that of 
an optimal binary search. 

42.2. HFVCFHF Search for Mappings with Runs 

Preliminary experiments, such as the c a s e  statement shown in listing 14 of section 4.1, 
led to the observation that good hash functions are more difficult to find for mappings in which 
there are :several runs in the domain. To further investigate this notion, the program used to gen- 
erate ranclom mappings was modified so that the probability of any two adjacent domain values 
having their values differ by 1 (i.e., be part of the same run) was 112. This ten~ds to generate 
domains with many relatively short runs irregularly spaced, which we suspected would be nearly 
the worst,-case scenario. 

Except for the above difference in how the mappings were selected, tlhe same tests 
described. in section 4.2.1 were performed. The general performance of the search ,was very simi- 
lar to tha.t reported for random mappings. However, there were several very important differ- 
ences between the f o n s  selected as optimal for the random mappings (table 2) and those selected 
for the mappings with runs (table 5): 
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Times Form Selected I - .  Lowest Cost HF Lowest Cost CFHF Formula 1 

Table 5: Lowest-Cost Forms Selected Mappings with Runs 

2 
2 
2 
1 

The number of different forms selected was much larger. Instead of 13, there were 33 
different forms. The 386sx needed 26 vs. 13, the R3000 needed 16 vs. 7, and the 
Sparc needed 14 vs. 6; in summary, twice as many fotms as for random1 mappings. 

There were some mappings for which no CFHF was cheaper than binary search. The 
fraction of failures ranged from 10% for the Sparc to 13% for the R3000. However 
disappointing this may be, notice that the system never failed to find an HF that was 
cheaper. Thus, a production system should allow HFs that are not CFEIFs. 

Some of the fotmulas selected used pop - a function to compute the population 
count (number of 1 bits). This is interesting because pop is not an instruction on any 
of these processors, but rather a subroutine call. Thus, the cost of pop was much 
more than it would be for machines that have that instruction- as most 

0 
0 
0 
1 
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0 
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0 
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0 
0 
0 
0 

2 
2 
2 
0 

. .  . . 
( (pop ( n - i )  t n )  ) LllIASK 
( (pop (n>>i) ̂n )  ) &MASK 
( (pop (n>>i )  -n) ) &MASK 
I ('n) %l) &MASK 
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~~upercomputers do (e.g, all Cray machines have a population count instruc:tion). 

This last ob~servation led us to define the generic supercomputer instruction set costs (called Super 
in section 4..2), including the treatment of pop as an instruction rather than a subroutine. In the 
three real tzuget machines, the timing for population count was obtained using a subroutine call to 
the C function given in listing 15. 

i n t  
pop ( r e g i s t e r  unsigned n) 

/* Compute populat ion count by SIMD summation 
o f  t h e  b i t s  within t h e  32-bit  word n .  

* / 
r e g i s t e r  unsigned mask - 0x55555555; 

n - (n & mask) + ( ( n  >> 1 )  & mask); 
mask - 0x33333333; 
n - (n 6 mask) + ( ( n  >> 2 )  & mask); 
mask = OxOfOfOfOf; 
n - (n & mask) + ( ( n  >> 4 )  & mask); 
mask - OxOOffOOff; 
n - (n & mask) + ( ( n  >> 8 )  & mask); 
mask - Ox0000ffff:  
return ( ( n  & mask) + ( (n >> 16) & mask) ) ; 

1 

Listing 15: C Function to Compute Population Count 

433.  A Target Machine with Population Count 

The "Super" target machine cost model was designed to reflect relative cos~ts for various 
instructions in an idealized supercomputer instruction set. Most operations, including population 
count, are assumed to take a single cycle; multiplicative operations are assumed to take 8 cycles4. 

The exact same test mappings used in sections 4.2.1 and 4.2.2, both the random and multi- 
ple run mappings, were submitted to the system to find optimal hash functions for the Super 
costs. The forms selected for the random mappings are listed in table 6; table 7 lists the forms 
selected for the mappings with runs. 

Although many supcomputers have faster multiplicative operation times, that ability is often restricted 
to floating p i n t  operations while the operations performed here are on integers. The 8cycle cost represents 
an approximation over hardware, convert to float, and multiply-step implementations. This cost is not critical 
to the point being made with the data for the Super target. 
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Table 6: Lowest-Cost Forms Selected for Random Mappings 
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Table 7: Lowest-Cost Forms Selected Mappings with Runs 

The significant observation is that population count was used in 16/21 formulas from table 
6 and in 18/30 from table 7. These results are so strong that they may be seen as sufficient 
justification for adding a population count instruction to a processor's instruction set. 

Why is use of pop so effective for hash functions? - because pop uses the binary 
representsltion to efficiently distinguish values in a highly non-linear way. It is useful to recall 
that the himming distance between two values can be obtained by exclusive-oring ithe two values 
and taking the population count of the result, so the use of pop is really incorporating a ham- 
ming distance into the hash computation. 

5. Conclusions 

In this paper, we first discussed the semantics associated with multiway bmlch statements 
in C, Paslcal, and Fortran-90. This led to a brief review of the traditional codings used, and to the 
observation that careful generation and use of a hash function to encode the mapping should yield 
consistently good results. 
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Serial and massively parallel implementations of a system to automatically generate 
machine-specific hash functions are detailed in section 3. The performance of the system is stu- 
died in section 4. Although restricting the hash to be conflict-free will cause the system to occa- 
sionally fail to find a cheap hash function, the results clearly show that an average improvement 
of about 4x can be expected by letting the system find an appropriate hash function that may have 
a few conflicts. Multiway branch statements in which the case values have several runs were 
shown to be more difficult than random case values, but were still handled efficiently by search- 
ing only ii small number of forms. 

Finiilly, driven by the observation that population count was used a few times in the 
cheapest formulas selected for machines in which population count was very expe:nsive, we stu- 
died the effect of having a relatively cheap population count instruction. As shown in section 
4.2.3, if <a population count instruction is available, it is used in most of the fonns selected as 
optimal. Thus, we suggest that population count should be considered as an instruc:tion providing 
efficient l~ardware support for computing hash functions. 

The: softwm described in this paper is available as a public domain software package; send 
email to hankd@ e c n  . purdue  . edu for more information. In the future, we holpe to integrate 
these techniques into the public domain Purdue Compiler-Construction Tool Set (PCCTS) 
[PaD92], so that all compilers generated by PCCTS may incorporate a target machine specific 
phase tha.t will generate optimized hash codings for multiway branches. 

Thilnks are given to W. E. Cohen for his help in proofreading and correcting this paper. 
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